• 제목/요약/키워드: Extended Galerkin Method

검색결과 51건 처리시간 0.025초

파랑 변형 해석을 위한 복합 유한요소 모형 (Hybrid finite element model for wave transformation analysis)

  • 정태화;박우선;서경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링 (New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid)

  • 이수일;정진태;임형빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

On the Modeling of Dynamic Systems

  • Suk, Jinyoung;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권1호
    • /
    • pp.78-92
    • /
    • 2001
  • In this paper, several dynamic systems are modeled using the time domain finite element method. Galerkins' Weak Principle is used to model the general second-order mechanical system, and is applied to a simple pendulum dynamics. Problems caused by approximating the final momentum are also investigated. Extending the research, some dynamic analysis methods are suggested for the hybrid coordinate systems that have both slew and flexible modes. The proposed methods are based on both Extended Hamilton's Principle and Galerkin's Weak Principle. The matrix wave equation is propagated in space domain, satisfying the geometric/natural boundary conditions. As a result, the flexible motion can be obtained compatible with the applied control input. Numerical example is shown to demonstrate the effectiveness of the proposed modeling methods for the hybrid coordinate systems.

  • PDF

점성균열 모델을 위한 국부단위분할이 적용된 무요소법 (A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks)

  • 지광습;정진규;김병민
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.861-872
    • /
    • 2006
  • 본 연구에서는 이차원 연속체에 존재하는 점성균열을 무요소법에서 국부 단위분할 원리에 근거하여 정식화하였다. 균열이 한 절점의 영향영역(domain of influence)을 완전히 통과하는 경우 그 절점의 형상함수는 계단함수로 확장되고, 균열 끝이 영향영역 내에 위치하는 경우 특이성이 제거된 가지함수(branch function)로 확장된다. 이러한 해의 영역의 확장은 국부 단위분할 원리를 만족하는 변위계에서만 이루어지므로, 약형 정식화는 표준 Galerkin방법에 의해서 얻어진다. 균열과 상호작용하는 영향영역만 확장되기 때문에, 성긴 형태의 시스템의 행렬을 유지하게 된다. 그러므로 확장에 의해 발생하는 계산비용의 증가는 최소화된다. 동적인 문제에서 균열성장에 관한 조건은 재료안정론으로부터 얻어졌다. 즉, 재료 한 점에서 어느 방향으로든 변형열화가 집중하게 되면, 그 방향에 점성균열을 삽입하여 연속체가 비연속체로 되도록 하였다. 균열의 성장속도도 같은 조건으로부터 자연스럽게 얻어졌다. 전통적인 무요소법보다 더 나은 정확도와 빠른 수렴성을 보이는 것이 확인되었으며, 이 기법의 적용성을 보이기 위해 잘 알려진, 정적 및 동적문제에 적용하였다.

고온에서 외부 가진력을 받는 회전하는 경사기능 박판 블레이드의 동적응답 해석 (Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady Temperature and External Excitation)

  • 오병영;나성수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.643-648
    • /
    • 2004
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics are provided for the case of a biconvex cross section and pertinent conclusions are outlined.

  • PDF

유체 이송 연직 외팔송수관의 동적안정성에 미치는 중력 효과 (Gravitational Effect on Dynamic Stability of a Vertical Cantilevered Pipe Conveying Fluid)

  • 류봉조;류시웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.174-179
    • /
    • 2004
  • The paper deals with gravitational effect on dynamic stability of a cantilevered pipe conveying fluid. The eigenvalue branches and modes associated with flutter of cantilevered pipes conveying fluid are fully investigated. Governing equations of motion are derived by extended Hamilton's principle, and the solutions are sought by Galerkin's method. Root locus diagrams are plotted for different values of mass ratio of the pipe, and the order of branch in root locus diagrams is defined. The flutter modes of the pipe at the critical flow velocities are drawn at every one of the twelfth period. The transference of flutter-type instability from one eigenvalue branches to another is investigated thoroughly.

  • PDF

유연한 조작기의 끝점위치 및 접촉력 제어 (End point and contact force control of a flexible manipulator)

  • 최병오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.552-558
    • /
    • 1993
  • In this paper, control of a planar two-link structurally flexible robotic manipulator executing unconstrained and constrained maneuvers is considered. The dynamic model, which is obtained by using the extended Hamilton's principle and the Galerkin criterion, includes the impact force generated during the transition from unconstrained to constrained segment of the robotic task. A method is presented to obtain the linearized equations of motion in Cartesian space for use in designing the control system. The linear quadratic Gaussian with loop transfer recovery (LQG/LTR) design methodology is exploited to design a robust feedback control system that can handle modeling errors and sensor noise, and operate on Cartesian space trajectory errors. The LQG/LTR compensator together with a feedforward loop is used to control the flexible manipulator. Simulated results are presented for a numerical example.

  • PDF

축방향으로 이송되는 부가질량을 가진 보의 안정성 해석 (Stability Analysis of Axially Moving Beam with Attached Mass)

  • 허관도;손인수;안성진
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.56-61
    • /
    • 2012
  • The dynamic instability and natural frequency of axially moving beam with an attached mass are investigated. Thus, the effects of an attached mass on the stability of the moving beam are studied. The governing equation of motion of the moving beam with an attached mass is derived from the extended Hamilton's principle. The natural frequencies are investigated for the moving beams via the Galerkin method under the simple support boundary. Numerical examples show the effects of the attached mass and moving speed on the stability of moving beam. Moreover, the lowest critical moving speeds for the simple supported conditions have been presented. The results can be used in the analysis of axially moving beams with an attached mass for checking the stability.

유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성 (Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped)

  • 정두한;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

축방향으로 이송되는 유체유동 단순지지 파이프의 안정성 해석 (Stability Analysis of Axially Moving Simply Supported Pipe Conveying Fluid)

  • 손인수;허관도;이상필;조정래
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.407-412
    • /
    • 2012
  • The dynamic instability and natural frequency of an axially moving pipe conveying fluid are investigated. Thus, the effects of fluid velocity and moving speed on the stability of the system are studied. The governing equation of motion of the moving pipe conveying fluid is derived from the extended Hamilton's principle. The eigenvalues are investigated for the pipe system via the Galerkin method under the simple support boundary. Numerical examples show the effects of the fluid velocity and moving speed on the stability of system. Moreover, the lowest critical moving speeds for the simply supported ends have been presented.