• Title/Summary/Keyword: Exposure prediction

Search Result 201, Processing Time 0.031 seconds

Suggestion of Prediction Equation for Environmental Noise of Saemaeul Train (새마을 열차 환경소음 예측식 제안)

  • Cho, Jun-Ho;Koh, Hyo-In;Kim, Jae-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.156-162
    • /
    • 2006
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisited. Many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict easily and exactly for the Korean Railway, because the acoustic powers for each rolling stock operated in Korea have not been built yet. So in this study, Prediction model equation for environmental noise for Korean rolling stock Saemaeul was suggested using SEL of engine and rolling noise component separately. Finally for the validation of prediction equation, the predicted result was compared to the measured.

Suggestion of Prediction Equation for Environmental Noise of Saemaeul Trains (새마을 열차 환경소음 예측식 제안)

  • Cho, Jun-Ho;Kim, Jae-Chul;Koh, Hyo-In;Han, Hwan-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.371-376
    • /
    • 2005
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisited. Many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict easily and exactly for the Korean Railway, because the acoustic powers for each rolling stock operated in Korea have not been built yet. So in this study, prediction model equation for environmental noise for Korean rolling stock Saemaeul was suggested using SEL of engine and roiling noise component separately. Finally for the validation of prediction equation, the predicted result was compared to the measured.

  • PDF

Development of Exposure Level Prediction Program in Radioactive Waste Work (방사성 폐기물 작업 중의 피폭서량 예측 프로그램 개발)

  • Park, Won-Man;Kim, Yoon-Hyuk;Whang, Joo-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • In spite of the importance of nuclear power as one of major electric energies in Korea, the nuclear safety has become the most serious social issue in the operation of the nuclear power plant. In this paper, a virtual work simulation program was developed to predict exposure dose during radiation work in radwaste storage. The work simulation program was developed. using $Java ^{TM}$applet and VRML-virtual reality modeling language. A numerical algorithm to find the optimal work path which minimize exposure dose during the given work, was developed and exposure dose on the optimal work path was compared with that on the shortest path. Comparing with the shortest path for the given work, the predicted optimal path consumed longer work time by II% but reduced total exposure dose by 46%. The simulation result showed that the exposure dose depended on not only work time, but also the distance between the worker and the radiation source. The developed simulation program could be a useful tool for the planning of radioactive waste work to increase the radiation safety of workers.

Management System for Saemangeum Gate Bridge (배수갑문 교량의 노후도 감시시스템)

  • Lee, Joon-Gu;Cho, Young-Kwon;Kim, Han-Joung;Kim, Kwan-Ho;Kim, Myung-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.241-244
    • /
    • 2006
  • The basic prediction model was constructed to obtain optimal maintenance method for concrete structure under marine environment by exploring the mechanism of mono and combined deterioration in lab. This model was planned to be upgraded with data acquired from several exposure specimens under same environment as structures. The computer program developed to give useful guidance observer would be improved. Several repair materials and repair construction methods applied to exposure specimens will be tested for its performance of prohibit salt attack and freezing & thawing action during experimental period about ten years. All of these data could be available to complete the prediction system. The manager will be able to use the system for optimal maintenance of marine concrete structures.

  • PDF

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Developing Asbestos Job Exposure Matrix Using Occupation and Industry Specific Exposure Data (1984-2008) in Republic of Korea

  • Choi, Sangjun;Kang, Dongmug;Park, Donguk;Lee, Hyunhee;Choi, Bongkyoo
    • Safety and Health at Work
    • /
    • v.8 no.1
    • /
    • pp.105-115
    • /
    • 2017
  • Background: The goal of this study is to develop a general population job-exposure matrix (GPJEM) on asbestos to estimate occupational asbestos exposure levels in the Republic of Korea. Methods: Three Korean domestic quantitative exposure datasets collected from 1984 to 2008 were used to build the GPJEM. Exposure groups in collected data were reclassified based on the current Korean Standard Industrial Classification ($9^{th}$ edition) and the Korean Standard Classification of Occupations code ($6^{th}$ edition) that is in accordance to international standards. All of the exposure levels were expressed by weighted arithmetic mean (WAM) and minimum and maximum concentrations. Results: Based on the established GPJEM, the 112 exposure groups could be reclassified into 86 industries and 74 occupations. In the 1980s, the highest exposure levels were estimated in "knitting and weaving machine operators" with a WAM concentration of 7.48 fibers/mL (f/mL); in the 1990s, "plastic products production machine operators" with 5.12 f/mL, and in the 2000s "detergents production machine operators" handling talc containing asbestos with 2.45 f/mL. Of the 112 exposure groups, 44 groups had higher WAM concentrations than the Korean occupational exposure limit of 0.1 f/mL. Conclusion: The newly constructed GPJEM which is generated from actual domestic quantitative exposure data could be useful in evaluating historical exposure levels to asbestos and could contribute to improved prediction of asbestos-related diseases among Koreans.

Application of Pharmacovigilance Methods in Occupational Health Surveillance: Comparison of Seven Disproportionality Metrics

  • Bonneterre, Vincent;Bicout, Dominique Joseph;De Gaudemaris, Regis
    • Safety and Health at Work
    • /
    • v.3 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • Objectives: The French National Occupational Diseases Surveillance and Prevention Network (RNV3P) is a French network of occupational disease specialists, which collects, in standardised coded reports, all cases where a physician of any specialty, referred a patient to a university occupational disease centre, to establish the relation between the disease observed and occupational exposures, independently of statutory considerations related to compensation. The objective is to compare the relevance of disproportionality measures, widely used in pharmacovigilance, for the detection of potentially new disease ${\times}$ exposure associations in RNV3P database (by analogy with the detection of potentially new health event ${\times}$ drug associations in the spontaneous reporting databases from pharmacovigilance). Methods: 2001-2009 data from RNV3P are used (81,132 observations leading to 11,627 disease ${\times}$ exposure associations). The structure of RNV3P database is compared with the ones of pharmacovigilance databases. Seven disproportionality metrics are tested and their results, notably in terms of ranking the disease ${\times}$ exposure associations, are compared. Results: RNV3P and pharmacovigilance databases showed similar structure. Frequentist methods (proportional reporting ratio [PRR], reporting odds ratio [ROR]) and a Bayesian one (known as BCPNN for "Bayesian Confidence Propagation Neural Network") show a rather similar behaviour on our data, conversely to other methods (as Poisson). Finally the PRR method was chosen, because more complex methods did not show a greater value with the RNV3P data. Accordingly, a procedure for detecting signals with PRR method, automatic triage for exclusion of associations already known, and then investigating these signals is suggested. Conclusion: This procedure may be seen as a first step of hypothesis generation before launching epidemiological and/or experimental studies.

Prediction of Exposure to 1763MHz Radiofrequency Radiation Using Support Vector Machine Algorithm in Jurkat Cell Model System

  • Huang Tai-Qin;Lee Min-Su;Bae Young-Joo;Park Hyun-Seok;Park Woong-Yang;Seo Jeong-Sun
    • Genomics & Informatics
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2006
  • We have investigated biological responses to radiofrequency (RF) radiation in in vitro and in vivo models. By measuring the levels of heat shock proteins as well as the activation of mitogen activated protein kinases (MAPKs), we could not detect any differences upon RF exposure. In this study, we used more sensitive method to find the molecular responses to RF radiation. Jurkat, human T-Iymphocyte cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 10 W/kg for one hour and harvested immediately (R0) or after five hours (R5). From the profiles of 30,000 genes, we selected 68 differentially expressed genes among sham (S), R0 and R5 groups using a random-variance F-test. Especially 45 annotated genes were related to metabolism, apoptosis or transcription regulation. Based on support vector machine (SVM) algorithm, we designed prediction model using 68 genes to discriminate three groups. Our prediction model could predict the target class of 19 among 20 examples exactly (95% accuracy). From these data, we could select the 68 biomarkers to predict the RF radiation exposure with high accuracy, which might need to be validated in in vivo models.

Ordinary kriging approach to predicting long-term particulate matter concentrations in seven major Korean cities

  • Kim, Sun-Young;Yi, Seon-Ju;Eum, Young Seob;Choi, Hae-Jin;Shin, Hyesop;Ryou, Hyoung Gon;Kim, Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.12.1-12.8
    • /
    • 2014
  • Objectives Cohort studies of associations between air pollution and health have used exposure prediction approaches to estimate individual-level concentrations. A common prediction method used in Korean cohort studies is ordinary kriging. In this study, performance of ordinary kriging models for long-term particulate matter less than or equal to $10{\mu}m$ in diameter ($PM_{10}$) concentrations in seven major Korean cities was investigated with a focus on spatial prediction ability. Methods We obtained hourly $PM_{10}$ data for 2010 at 226 urban-ambient monitoring sites in South Korea and computed annual average $PM_{10}$ concentrations at each site. Given the annual averages, we developed ordinary kriging prediction models for each of the seven major cities and for the entire country by using an exponential covariance reference model and a maximum likelihood estimation method. For model evaluation, cross-validation was performed and mean square error and R-squared ($R^2$) statistics were computed. Results Mean annual average $PM_{10}$ concentrations in the seven major cities ranged between 45.5 and $66.0{\mu}g/m^3$ (standard deviation=2.40 and $9.51{\mu}g/m^3$, respectively). Cross-validated $R^2$ values in Seoul and Busan were 0.31 and 0.23, respectively, whereas the other five cities had $R^2$ values of zero. The national model produced a higher cross-validated $R^2$ (0.36) than those for the city-specific models. Conclusions In general, the ordinary kriging models performed poorly for the seven major cities and the entire country of South Korea, but the model performance was better in the national model. To improve model performance, future studies should examine different prediction approaches that incorporate $PM_{10}$ source characteristics.

Computation of geographic variables for air pollution prediction models in South Korea

  • Eum, Youngseob;Song, Insang;Kim, Hwan-Cheol;Leem, Jong-Han;Kim, Sun-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.10.1-10.14
    • /
    • 2015
  • Recent cohort studies have relied on exposure prediction models to estimate individual-level air pollution concentrations because individual air pollution measurements are not available for cohort locations. For such prediction models, geographic variables related to pollution sources are important inputs. We demonstrated the computation process of geographic variables mostly recorded in 2010 at regulatory air pollution monitoring sites in South Korea. On the basis of previous studies, we finalized a list of 313 geographic variables related to air pollution sources in eight categories including traffic, demographic characteristics, land use, transportation facilities, physical geography, emissions, vegetation, and altitude. We then obtained data from different sources such as the Statistics Geographic Information Service and Korean Transport Database. After integrating all available data to a single database by matching coordinate systems and converting non-spatial data to spatial data, we computed geographic variables at 294 regulatory monitoring sites in South Korea. The data integration and variable computation were performed by using ArcGIS version 10.2 (ESRI Inc., Redlands, CA, USA). For traffic, we computed the distances to the nearest roads and the sums of road lengths within different sizes of circular buffers. In addition, we calculated the numbers of residents, households, housing buildings, companies, and employees within the buffers. The percentages of areas for different types of land use compared to total areas were calculated within the buffers. For transportation facilities and physical geography, we computed the distances to the closest public transportation depots and the boundary lines. The vegetation index and altitude were estimated at a given location by using satellite data. The summary statistics of geographic variables in Seoul across monitoring sites showed different patterns between urban background and urban roadside sites. This study provided practical knowledge on the computation process of geographic variables in South Korea, which will improve air pollution prediction models and contribute to subsequent health analyses.