• Title/Summary/Keyword: Exposure dose Evaluation

Search Result 400, Processing Time 0.025 seconds

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

A Study on Various Automatic Exposure Control System in Multi-Detector Computed Tomography by Using Human Phantom (인체 모형을 이용한 다중 검출기 컴퓨터단층촬영기기의 다양한 자동노출제어 시스템에 대한 연구)

  • Kim, Yong-Ok;Seoung, Youl-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1714-1720
    • /
    • 2012
  • The purpose of the study was to evaluation of the radiation dose reduction and the possibility of the maintainability of the adequate image quality using various automatic exposure control (AEC) systems in multi-detector computed tomography (MDCT). We used three AEC systems for the study: General Electric Healthcare (Auto-mA 3D), Philips Medical systems (DoseRight) and Siemens Medical Solutions (Care Dose 4D). The general scanning protocol was created for the each examination with the same scanning parameters as many as possible. In the various AEC systems, the evaluation of reduced-dose was evaluated by comparing to fixed mAs with using human phantom. The image quality of the phantom was evaluated with measuring the image noise (standard deviation) by insert regions of interests. Finally, when we applied to AEC for three manufacturers, the radiation dose reduction decreased each 35.3% in the Auto-mA 3D, 58.2% in the DoseRight, and 48.6% in the Care Dose 4D. And, there was not statistical significant difference among the image quality in the Strong/Weak of the Care Dose 4D(P=.269). This applies to variety of the AEC systems which will be very useful to reduce the dose and to maintain the high quality.

The Evaluation of Radiation Dose by Exposure Method in Digital Magnification Mammography (디지털 유방확대촬영술에서 노출방식에 따른 피폭선량 평가)

  • Kim, Mi-Young;Kim, Hwa-Sun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.293-298
    • /
    • 2012
  • In digital mammography, Exposure factor were automatically chosen using by measurement breast thickness and the density of mammary gland. It may cause a increase glandular dose. The purpose of this study was to investigate optimal image quality in digital magnification mammography to decrease radiation exposure of patient dose. Auto mode gives the best image quality however, AGD showed better image quality. Image quality of manual mode passed phantom test and SNR at 55% mAs of auto mode commonly used in the digital magnification mammography. Also it could reduce AGD. According to result, manual mode may reduce the unnecessary radiation exposure in digital magnification mammography.

A study on pressurizer cutting scenario for radiation dose reduction for workers using VISIPLAN

  • Lee, Hak Yun;Kim, Sun Il;Song, Jong Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2736-2747
    • /
    • 2022
  • The operations in the design lifecycle of a nuclear power plant targeted to be decommissioned lead to neutron activation. Operations in the decommissioning process include cutting, decontamination, disposal, and processing. Among these, cutting is done close to the target material, and thus workers are exposed to radiation. As there are only a few studies on pressurizers, there arises the need for further research to assess the radiation exposure dose. This study obtained the specifications of the AP1000 pressurizer of Westinghouse and the distribution of radionuclide inventory of a pressurizer in a pressurised water reactor for evaluation based on literature studies. A cutting scenario was created to develop an optimal method so that the cut pieces fill a radioactive solid waste drum with dimensions 0.571 m × 0.834 m. The estimated exposure dose, estimated using the tool VISIPLAN SW, in terms of the decontamination factor (DF) ranged from DF-0 to DF-100, indicating that DF-90 and DF-100 meet the ICRP recommendation on exposure dose 0.0057 mSv/h. At the end of the study, although flame cutting was considered the most efficient method in terms of cutting speed, laser cutting was the most reasonable one in terms of the financial aspects and secondary waste.

AN INTEGRATED APPROACH TO RISK-BASED POST-CLOSURE SAFETY EVALUATION OF COMPLEX RADIATION EXPOSURE SITUATIONS IN RADIOACTIVE WASTE DISPOSAL

  • Seo, Eun-Jin;Jeong, Chan-Woo;Sato, Seichi
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Embodying the safety of radioactive waste disposal requires the relevant safety criteria and the corresponding stylized methods to demonstrate its compliance with the criteria. This paper proposes a conceptual model of risk-based safety evaluation for integrating complex potential radiation exposure situations in radioactive waste disposal. For demonstrating compliance with a risk constraint, the approach deals with important exposure scenarios from the viewpoint of the receptor to estimate the resulting risk. For respective exposure situations, it considers the occurrence probabilities of the relevant exposure scenarios as their probability of giving rise to doses to estimate the total risk to a representative person by aggregating the respective risks. In this model, an exposure scenario is simply constructed with three components:radionuclide release, radionuclide migration and environment contamination, and interaction between the contaminated media and the receptor. A set of exposure scenarios and the representative person are established from reasonable combinations of the components, based on a balance of their occurrence probabilities and the consequences. In addition, the probability of an exposure scenario is estimated on the assumption that the initiating external factors influence release mechanisms and transport pathways, and its effect on the interaction between the environment and the receptor may be covered in terms of the representative person. This integrated approach enables a systematic risk assessment for complex exposure situations of radioactive waste disposal and facilitates the evaluation of compliance with risk constraints.

Dose and Image Evaluation of Pediatric Head Image according to CT Scan Mode and kVp Changes (CT Scan Mode와 관전압 변경에 따른 소아 두부 영상의 선량 및 영상평가)

  • Byeong-Je Kim;Dong-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.801-808
    • /
    • 2023
  • In order to minimize radiation exposure and secure diagnostic value images during CT examination of the head of children, the usefulness of volume axial mode is evaluated through comparison and analysis of exposure dose and images of volume axial mode, high pitch mode, and helical mode. Image evaluation and dose evaluation were performed in CT high pitch mode, helical mode, and volume axial mode for infants under the age of 1 according to the voltages of 70, 80, and 100 kVp tubes. The image evaluation was conducted by comparing image quality by setting ROI for each image, calculating SNR and CNR, using ONE-WAY (ANOVA) to evaluated statistical significance, and cross-examining the dose evaluation using DLP values displayed in the Dose Report. When inspected using volume axial mode, DLP values were generally low, and SNR and CNR values differed by ROI and kVp. When volume axial mode evaluated the quality of the image compared to other scan modes, the difference is not uniform. For the reason, certain modes are not considered excellent, but the exposure dose was reduced the most in terms of dose. In addition, the point that the volume axial mode can be examined at its original location, short scanning time and needless of table movement is useful for CT tests for children under 1 year of age with high radiation sensitivity.

Reduction of Patient Dose Exposure and Improvement of Image Quality by Use of Additional Filtration in Digital Radiology (디지털 진단방사선촬영에서 부가여과판 사용에 따른 피폭선량 감소와 화질 개선)

  • Moon, Su-Jeong;Kim, Young-Keun;Lee, Seong-Kil
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • This study is mainly for the reduction of exposure dose by using a heavy elements filter(Gd) in the digital radiology. They contained heavy elements filter of Gd and X-ray beam hardening filters such as Al and Cu. According to the results of experimental evaluation, X-ray property was not changed with variety of kVp in the case of the Gd filter. The surface dose and absorption dose were increased in order of Cu and Al. The contrast of image showed the higher value in order of Cu, Al and Gd. While the use of Gd has increased the numerical value of the CR image, and grayscale has decreased noise value of the DR image.

  • PDF

Dose and Image Quality Analysis According to The Type of Composite Additional Filter (복합 부가필터 종류에 따른 선량 및 화질 분석)

  • Myoung, Noh-Beom;Im, So-Yeon;Yoo, Se-Jong;Kim, Seong-Ho;Jeon, Min-Cheol
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.147-154
    • /
    • 2020
  • In this study, four types of composite added filtration (aluminum, nickel, copper, and zinc) were combined for each thickness to evaluate dose reduction and optimal images due to X-ray attenuation. To evaluate dose and image quality. X-ray generators, Dose Area Product(DAP) and ICY programs with RQR9 standard quality were used. In the image quality evaluation element (PSNR, RMSE, SSIM), only images with PSNR value of 30 dB or more were analyzed. As a result, the best combination in dose evaluation was 3 mmAl + 0.6 mmNi (0.16µGy㎡), and the best filter in image quality evaluation was 0.9 mmAl (PSNR 34.24dB, RMSE 79.52, SSIM 0.24). In this study, the dose aspect and the image quality aspect are mentioned, So it is considered that further studies on patient's exposure dose and optimal image will be needed in the future.

Study of radiation exposure on human body using of Computed Tomography (전산화단층촬영 검사 시 인체에 미치는 방사선피폭선량 분석연구)

  • Seon, Jong-Ryoul;Yoo, Se-Jong
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • This study analyzed the total number of 19,636 patients and radiation technologists, 11,433 of male and 8,203 of female by examined body parts, age, types of detectors, the using contrast enhancement and working condition of the technologists, regular staffs or rotation-duty staffs, based on the K-DOS program distributed by FDA with the DLP value of diagnostic evaluation. The result shows that the effective radiation dose was 0.7mSv~41.7mSv for each region and male patients had more radiation exposure than females. And the amount of exposure was also affected by the types and the method of detectors. Furthermore, the regular staffs took the role of helping the patient to get reduced amount of radiation exposure than rotation duty-staffs. Computed tomography (CT) use has increased dramatically over the past several decades. In this reason, to support the patients and the workers' health in the field, the hospitals should apply specialized regular working radiation technologist system and manufacturing companies of those CTs should develop low medical radiation exposure devices.