DOI QR코드

DOI QR Code

Dose and Image Quality Analysis According to The Type of Composite Additional Filter

복합 부가필터 종류에 따른 선량 및 화질 분석

  • Myoung, Noh-Beom (Department of Radiology, Chungnam National University Sejong Hospital) ;
  • Im, So-Yeon (Department of Radiation Oncology, Gangnam Severance Hospital) ;
  • Yoo, Se-Jong (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Kim, Seong-Ho (Department of Radiology, Daejeon Health Institute of Technology) ;
  • Jeon, Min-Cheol (Department of Radiology, Daejeon Health Institute of Technology)
  • 명노범 (세종충남대학교병원 영상의학과) ;
  • 임소연 (강남세브란스병원 방사선종양학과) ;
  • 유세종 (대전보건대학교 방사선(학)과) ;
  • 김성호 (대전보건대학교 방사선(학)과) ;
  • 전민철 (대전보건대학교 방사선(학)과)
  • Received : 2020.07.30
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

In this study, four types of composite added filtration (aluminum, nickel, copper, and zinc) were combined for each thickness to evaluate dose reduction and optimal images due to X-ray attenuation. To evaluate dose and image quality. X-ray generators, Dose Area Product(DAP) and ICY programs with RQR9 standard quality were used. In the image quality evaluation element (PSNR, RMSE, SSIM), only images with PSNR value of 30 dB or more were analyzed. As a result, the best combination in dose evaluation was 3 mmAl + 0.6 mmNi (0.16µGy㎡), and the best filter in image quality evaluation was 0.9 mmAl (PSNR 34.24dB, RMSE 79.52, SSIM 0.24). In this study, the dose aspect and the image quality aspect are mentioned, So it is considered that further studies on patient's exposure dose and optimal image will be needed in the future.

본 연구에서는 복합 부가필터(Composite added filtration) 4가지 종류(알루미늄, 니켈, 구리, 아연)를 두께별로 조합하여 X-선 감약에 따른 선량감소와 최적의 영상을 평가하였다. 선량과 화질을 평가는 RQR9 표준 선질을 설정한 X선 발생장치, 면적선량계 그리고 ICY 프로그램이 사용되었다. 화질평가 항목(PSNR, RMSE, SSIM)에서는 PSNR값이 30 dB 이상이 되는 영상들만을 분석하였다. 그 결과 선량평가에서 가장 우수한 조합은 3 mmAl + 0.6 mmNi(0.16µGy㎡)이었고, 화질평가에서 가장 우수한 필터는 0.9 mmAl (PSNR 34.24dB, RMSE 79.52, SSIM 0.24)이었다. 본 연구에서는 선량적 측면과 화질적 측면이 언급되었기에 향후 환자의 피폭선량과 최적의 영상에 대한 더 많은 연구가 필요할 것으로 사료된다.

Keywords

References

  1. C. K. Lee, J. S. Oh, S. W. Choi, G. J. Kim, S. J. Yoo & M. C. Jeon. (2018). The convergence study on patient position and exposure dose in abdominal CT examination using AEC. Journal of the Korea Convergence Society, 9(12), 107-113. DOI : 10.15207/JKCS.2018.9.12.107
  2. W. J. Lee & S. C. Jeong. (2019). Prediction of Entrance Surface Dose in Chest Digital Radiography. Journal of the Korean Society of Radiology, 13(4), 573-579. DOI : 10.7742/JKSR.2019.13.4.573
  3. C. G. Kim. (2014). Spatial dose distribution and exposure dose during lumbar lateral test. Journal of the Korea Convergence Society, 5(1), 17-22. DOI : 10.15207/JKCS.2014.5.1.017
  4. ICRP. (2007). Recommendations of the Inte r national Commission on Radiological Protection. ICRP Publication 103, 9(12), 107-113.
  5. I. H. Choi, K. T. Kim, H. H. Park, S. S. Kang, S. C. Noh & J. K. Park. (2016). The Study of Affecting Image Quality according to forward Scattering Dose used Additional Filter in Diagnostic Imaging System. Journal of the Korean Society of Radiology, 10(8), 597-602. DOI : 10.7742/JKSR.2016.10.8.597
  6. J. S. Lee & C. S. Kim. (2015). The Additional Filter and Ion Chamber Sensor Combination Reducing Patient Dose in Digital Chest X-ray Projection, The Korean Journal of The Korea Convergence Society, 9(3), 175-181. DOI : 10.7742/JKSR.2015.9.3.175
  7. M. J. Oh, J. W. Hong & Y. G. Lee. (2019). Comparison Evaluation of Image Quality with Different Thickness of Aluminum added Filter using GATE Simulation in Digital Radiography. The Korean Society of Radiology, 13(1), 81-86. DOI : 10.7742/JKSR.2019.13.1.81
  8. K. S. Kim & S. C. Kim. (2015). Comparison of Image Quality and Effective Dose by Additional Filtration on Digital Chest Tomosynthesis. Journal of Radiological Science and Technology, 38(4), 347-353. DOI : 10.17946/JRST.2015.38.4.03
  9. N. G. Choi, H. J. Seong, J. S. Jeon, Y. H. Kim & D. O. Seong. (2012). A Comparative Study of Image Quality and Radiation Dose according to Variable Added Filter and Radiation Exposure in Diagnostic X-Ray Radiography. Journal of Radiation Protection and Research, 37(1), 25-34. DOI : 10.14407/JRP.2012.37.1.025
  10. K. W. Kim & J. H. Son. (2016). Study on Exposure Dose According to Change of Source to Image Distance and Additional Filter Using Abdomen Phantom. Journal of Radiological Science and Technology, 39(3), 407-414. DOI : 10.17946/JRST.2016.39.3.15
  11. International Electrotechnical Commission. (2005). Medical diagnostic X-ray equipment-radiation conditions for use the determination of characteristics. IEC 61267, IEC, Geneva. DOI : 10.3969/J.ISSN.1671-7104.2018.06.018
  12. International Atomic Energy Agency. (2007). Dosimetry in diagnostic radiology: an international code of practice. IAEA technical report series 457, IAEA, Vienna.
  13. American Association of Physicists in Medicine. (2009). Report of AAPM Task Group 116.
  14. D. H. Kim & S. H. Kim. (2015). Convergence Performance Evaluation of Radiation Protection for Apron using the PSNR. Journal of Digital Convergence, 13(10), 377-383. DOI : 10.14400/JDC.2015.13.10.377
  15. W. J. Seo, J. B. Seo & J. W. Lee. (2012). Using Image J program, compared of focusing distance and grid rate. Korean Journal of Digital Imaging in Medicine. Korean Journal of Digital Imaging in Medicine, 14(1), 37-42.
  16. S. Y. Seo, M. S. Han, C. G. Kim, M. C. Jeon, Y. K. Kim & G. J. Kim. (2017). A study on the usefulness of a fusion model designed cloak shield to reduce the radiation exposure of the assistant during CT of severely injured patient. Journal of the Korea Convergence Society, 8(9), 211-216. DOI : 10.15207/JKCS.2017.8.9.211
  17. H. K. Lee, Y. R. Go, Y. K. Park & D. K. Han. (2017). Comparison of Dose and Quality of Copper and Nickel Additional Filter Plate in Diagnostic X-ray Generator. Journal of the Korean Society of Radiology, 11(6), 459-466. DOI : 10.7742/JKSR.2017.11.6.459
  18. W. I. Cho, Y. K. Kim & G. D. Lee. (2013). Change of Dose Exposure and Improvement of Image Quality by Additional Filtration in Mammography. Journal of Radiation Protection and Research, 38(2), 78-90. DOI : 10.14407/jrp.2013.38.2.078
  19. Atkins, H. L., Fairchild, R. G., Robertson, J. S. & Greenberg, D. (1975). Effect of absorption edge filters on diagnostic X-ray spectra. Radiology, 115(2), 210-214. DOI : 10.1148/115.2.431
  20. S. H. Kim, Y. M. Kim, K. T. Kwon, S. C. Ma & D. G. Han. (2015). A Analysis of Effectiveness of Aluminium Filter in the added Compound Filtration by Detective Quantum Efficiency and Image Quality Evaluation. The Journal of the Korea Contents Association, 15(10), 362-373. DOI : 10.5392/JKCA.2015.15.10.362
  21. S. H. Kim & J. H. Choi. (2015). Analysis of Effectiveness of Spectrum of Energy and Image Quality Evaluation by Aluminium Filter in the added Compound Filtration. Journal of Radiological Science and Technology, 38(3), 187-197. DOI : 10.17946/JRST.2015.38.3.01
  22. K. J. Lee, M. G. Kim, J. W. Lee & H. C. Kim. (2013). Research for The Environmental Optimization of Dose and Image quality in Digital Raidography. Journal of The Institute of Electronics Engineers of Korea, 50(2), 493-499. DOI : 10.5573/ieek.2013.50.2.203
  23. K. W. Kim & J. H. Son. (2015). Comparisons and Measurements the Dose Value Using the Semiconductor Dosimeter and Dose Area Product Dosimeter in Skull, Chest and Abdomen. Journal of Radiological Science and Technology, 38(2), 101-106. DOI : 10.17946/JRST.2015.38.2.03
  24. K. M. Choi, S. I. Shin, J. M. Yoon, S. C. Kim, S. S. Lee & J. Huh. (1996). The reduction of radiation dose using key-filter in chest radiography. Journal of Korean Society of Radiological Technology, 19(2), 67-70.