• Title/Summary/Keyword: Exponential ergodicity

Search Result 5, Processing Time 0.017 seconds

Uniform Ergodicity of an Exponential Continuous Time GARCH(p,q) Model

  • Lee, Oe-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2012
  • The exponential continuous time GARCH(p,q) model for financial assets suggested by Haug and Czado (2007) is considered, where the log volatility process is driven by a general L$\acute{e}$vy process and the price process is then obtained by using the same L$\acute{e}$vy process as driving noise. Uniform ergodicity and ${\beta}$-mixing property of the log volatility process is obtained by adopting an extended generator and drift condition.

Uniform Ergodicity and Exponential α-Mixing for Continuous Time Stochastic Volatility Model

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • A continuous time stochastic volatility model for financial assets suggested by Barndorff-Nielsen and Shephard (2001) is considered, where the volatility process is modelled as an Ornstein-Uhlenbeck type process driven by a general L$\'{e}$vy process and the price process is then obtained by using an independent Brownian motion as the driving noise. The uniform ergodicity of the volatility process and exponential ${\alpha}$-mixing properties of the log price processes of given continuous time stochastic volatility models are obtained.

Geometric ergodicity for the augmented asymmetric power GARCH model

  • Park, S.;Kang, S.;Kim, S.;Lee, O.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1233-1240
    • /
    • 2011
  • An augmented asymmetric power GARCH(p, q) process is considered and conditions for stationarity, geometric ergodicity and ${\beta}$-mixing property with exponential decay rate are obtained.

STATIONARY $\beta-MIXING$ FOR SUBDIAGONAL BILINEAR TIME SERIES

  • Lee Oe-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.1
    • /
    • pp.79-90
    • /
    • 2006
  • We consider the subdiagonal bilinear model and ARMA model with subdiagonal bilinear errors. Sufficient conditions for geometric ergodicity of associated Markov chains are derived by using results on generalized random coefficient autoregressive models and then strict stationarity and ,a-mixing property with exponential decay rates for given processes are obtained.

Continuous Time Approximations to GARCH(1, 1)-Family Models and Their Limiting Properties

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Various modified GARCH(1, 1) models have been found adequate in many applications. We are interested in their continuous time versions and limiting properties. We first define a stochastic integral that includes useful continuous time versions of modified GARCH(1, 1) processes and give sufficient conditions under which the process is exponentially ergodic and ${\beta}$-mixing. The central limit theorem for the process is also obtained.