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Abstract

An augmented asymmetric power GARCH(p, q) process is considered and conditions
for stationarity, geometric ergodicity and β-mixing property with exponential decay
rate are obtained.
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1. Introduction

Since the seminal works of Engle (1982) and Bollerslev (1986), the ARCH (autoregressive
conditional heteroscedasticity) model and generalized ARCH (GARCH) model have been
widely used to analyze financial time series. The GARCH model captures so-called stylized
facts such as jumps, time varying volatility and heavy tailedness successfully, however, em-
pirical studies show that further extensions need to be developed to explain asymmetry and
long range dependence phenomena which cannot be represented by the classical GARCH
model.

In this paper, we consider the augmented asymmetric power GARCH (p, q) (APARCH(p, q))
model which is introduced by Ding et al. (1993) to feature both asymmetry and long range
dependence :

εt = htet (1.1)

hδt = α0 +

p∑
i=1

αi(|εt−i| − γiεt−i)δ +

q∑
j=1

βjh
δ
t−j (1.2)
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where α0 > 0, δ > 0, αi ≥ 0, βj ≥ 0, |γi| < 1 (i = 1, ..., p, j = 1, ..., q), and {et}∞t=0 is a
sequence of independent and identically distributed (i.i.d.) random variables with E|et|δ <
∞. If δ = 2, γi = 0,∀i, then the process (1.1)-(1.2) reduces to the classical GARCH(p, q)
model.

Ling and McAleer (2002) provide the necessary and sufficient condition for the strict sta-
tionarity, ergodicity and existence of higher order moments of the transformed GARCH(p, q)
model with γi = γ for all i = 1, · · · , p. Geometric ergodicity and existence of moments con-
ditions for the ARCH-type model (q = 0) are given in Hwang and Kim (2004). Lee and
Shin (2004) shows the geometric ergodicity and β-mixing property of the APARCH(p, q)
model with γi = γ,∀i based on a polynomial matrix transformation. Bellini and Bottolo
(2007) give stationarity domains for δ-power GARCH model. There is no literature that we
know of, in which the geometric ergodicity of the model (1.1)-(1.2) is obtained. Geometric
ergodicity and mixing properties are useful for numerous applications including asymptotic
statistics.

Section 2 gives some definitions and preliminary results. In Section 3, we prove our main
results that are concerned with the geometric ergodicity and β-mixing property. A higher
order moment condition is also given.

2. Preliminaries

Let {Xt} be a Markov process with state space S and t-step transition probability function
P t(x,G) with x ∈ S, G ∈ B(S).

A Markov chain {Xt} is φ-irreducible if, for some nontrivial measure φ on (S,B),∑
t>0 P

t(x,G) > 0 for all x ∈ S whenever φ(G) > 0. {Xt} is called a Feller chain, if
for each bounded continuous f on S, E[f(Xt)|Xt−1 = x] is a continuous function of x.

A Markov chain {Xt} is said to satisfy the drift condition if there are a positive function
V on S, a compact set K and some real numbers M <∞, ε > 0, 0 < ρ < 1 such that:

(1) E[V (Xt+1)|Xt = x] ≤ ρV (x)− ε if x ∈ Kc;
(2) E[V (Xt+1)|Xt = x] ≤M if x ∈ K.
{Xt} is said to be geometrically ergodic if there exist a probability measure π and a

constant ρ, 0 < ρ < 1, such that

ρ−t‖P t(x, ·)− π(·)‖ → 0 as t→∞

for each x ∈ S.

Theorem 2.1 (Meyn and Tweedie, 1993) Suppose that a Markov chain {Xt} has the Feller
property. If {Xt} satisfies the drift condition for a compact set K, then there exists an
invariant probability measure. In addition, if the process is φ-irreducible and aperiodic,
then the given process is geometrically ergodic.

Theorem 2.1 shows that the crucial step to prove the geometric ergodicity of a process is
to show that the given Markov chain is φ−irreducible and holds the drift condition. In many
cases, however, proving irreducibility of a Markov process is an awkward task. Consulting
the following Theorem 2.2, irreducibility of the process can be derived from connections
between φ-irreducibility and the uniform countable additivity condition. A Markov chain
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{Xt} is said to hold the uniform countable additivity condition, if its transition probability
function satisfies that for any sequence of compact sets Gn ↓ ∅,

lim
Gn↓∅

sup
x∈K

P (x,Gn) = 0 for every compact set K ∈ B.

Theorem 2.2 (Tweedie, 2001) Suppose that the drift condition holds with a test set K
and the uniform countable additivity condition holds for the same set K. Then there is a
unique invariant measure for Xt if and only if Xt is φ-irreducible.

For more information on Markov chain theory, we refer to Meyn and Tweedie (1993).

3. Main results

Consider the APGARCH(p, q) model given by (1.1) and (1.2). Let

e+t = max{0, et}, e−t = max{0,−et}, e+δt = (e+t )δ, e−δt = (e−t )δ.

Multiplying both sides of (1.2) by e+δt and e−δt respectively, and denoting y+t = hδte
+δ
t , y−t =

hδte
−δ
t , we obtain that

y+t = α0e
+δ
t +

p∑
i=1

αi(1− γi)δe+δt y+t−i +

p∑
i=1

αi(1 + γi)
δe+δt y−t−i +

q∑
j=1

βje
+δ
t hδt−j

and

y−t = α0e
−δ
t +

p∑
i=1

αi(1− γi)δe−δt y+t−i +

p∑
i=1

αi(1 + γi)
δe−δt y−t−i +

q∑
j=1

βje
−δ
t hδt−j .

Then the equation (1.1) and (1.2) can be rewritten in the following Markovian representation:

Yt = A(et)Yt−1 +B(et), t ≥ 0 (3.1)

where
Yt = (y+t , · · · , y+t−p+1, y

−
t , · · · , y−t−p+1, h

δ
t , · · · , hδt−q+1)′,

At = A(et) =
a1e

+δ
t · · · ape

+δ
t b1e

+δ
t · · · bpe

+δ
t β1e

+δ
t · · · βqe

+δ
t

J1 O(p−1)×p O(p−1)×p
a1e
−δ
t · · · ape

−δ
t b1e

−δ
t · · · bpe

−δ
t β1e

−δ
t · · · βqe

−δ
t

O(p−1)×p J1 O(p−1)×p
a1 · · · ap b1 · · · bp β1 · · · βq

O(p−1)×p O(p−1)×p J2


J1 = (I(p−1)×(p−1)O(p−1)×1), J2 = (I(q−1)×(q−1)O(q−1)×1),

ai = αi(1− γi)δ, bi = αi(1 + γi)
δ,
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and Bt = B(et) = (α0e
+δ
t , 0, · · · , 0, α0e

−δ
t , 0, · · · , 0, α0, 0, · · · , 0)′. {At}∞t=0 is a sequence of

i.i.d. nonnegative (2p+ q)× (2p+ q) random matrices and {Bt}∞t=0 a sequence of i.i.d and
nonnegative (2p + q) × 1 random vectors. Note that if s < t, then (At, Bt) and Ys are
independent.

We make the assumptions:
Assumption A1.

∑q
i=1 βi +

∑p
i=1 αiE(|et−i| − γiet−i)δ < 1.

Assumption A2. et has a probability density function g with respect to a Lebesgue measure
µ on R and g is bounded on compacts.

For notational convenience, we assume that p = q. If p > q, then take βq+1 = · · · = βp = 0.
Let A = E(At), E(e+δt ) = µ1, E(e−δt ) = µ2. ρ(A) denotes the spectral radius of a matrix

A.

Lemma 3.1 ρ(A) < 1 if and only if the Assumption A1 holds.

Proof. A simple calculation leads to the relation: det(A − λI) = (−1)3pλ2p{λp − (µ1a1 +
µ2b1 + β1)λp−1 − (µ1a2 + µ2b2 + β2)λp−2 − · · · − (µ1ap + µ2bp + βp)}. Therefore, by Lemma
2.3 in Ling(1999), ρ(A) < 1 if and only if the Assumption A1 holds.

Lemma 3.2 If the Assumption A1 holds, then there exists a unique strictly stationary
solution of (3.1).

Proof. Recall that the top Lyapunov exponent γ associated with a sequence {At, t ∈ Z} of
i.i.d. random matrices is given by

γ = lim
t→∞

1

t
log ‖A0A−1 · · ·A−t‖.

Since At is nonnegative, γ < log ρ(A) (Kesten and Spitzer (1984)) and hence ρ(A) < 1
implies that γ < 0. Applying Theorem 2.5 in Bougerol and Picard (1992) and above Lemma
3.1, the existence of a unique strictly stationary solution of the equation (3.1) is obtained.

Lemma 3.3 {Yt} has the Feller property.

Proof. For any bounded and continuous function f on R2p+q, f(Atxn + Bt) converges to
f(Atx+Bt) if xn → x as n goes to∞. Apply the Lebesgue dominated convergence theorem
to get that E[f(Atxn +Bt)] converges to E[f(Atx+Bt)] as n→∞.

Lemma 3.4 Under the Assumption A1, the drift condition holds.

Proof. Define a test function V : R3p → R+ by

V (x1, · · · , x3p) =

p∑
i=1

(ci|xi|+ di|xp+i|+ fi|x2p+i|),

where nonnegative constants ci, di, fi(1 ≤ i ≤ p) are to be defined later.
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For Yt−1 = y = (x1, · · · , xp, z1, · · · , zp, w1, · · · , wp) ∈ R+3p, we have that

E[V (Yt)|Yt−1 = y]

= c1E[y+t |Yt−1 = y] + d1E[y−t |Yt−1 = y] + f1h
δ
t +

p∑
i=2

(cixi−1 + dizi−1 + fiwi−1)

=

p∑
i=1

[(mai + ci+1)xi + (mbi + di+1)zi + (mβi + fi+1)wi] + α0m, (3.2)

where m = c1µ1 + d1µ2 + f1. (assume cp+1 = dp+1 = fp+1 = 0.)
From the Assumption A1, we may choose 0 < ρ < 1, such that

p∑
i=1

βi + µ1

p∑
i=1

ai + µ2

p∑
i=1

bi < ρp < ρ < 1. (3.3)

Let Ã =
∑p
i=1 ρ

p−iai, B̃ =
∑p
i=1 ρ

p−ibi, C̃ =
∑p
i=1 ρ

p−iβi.
Choose c1 > 0 arbitrarily but fixed and then take

f1 =
C̃

Ã
c1, d1 =

(c1µ1 + f1)B̃

ρp − µ2B̃
. (3.4)

Here d1 > 0, since C̃ + µ1Ã+ µ2B̃ ≤ ρp < ρ < 1.
Now define, for i = 2, · · · , p,

ci =
1

ρ
(mai + ci+1), di =

1

ρ
(mbi + di+1), fi =

1

ρ
(mβi + fi+1). (3.5)

Then simple calculation using (3.3)-(3.5) yields that for 1 ≤ i ≤ p,

aim+ ci+1 ≤ ρci, bim+ di+1 ≤ ρdi, βim+ fi+1 ≤ ρfi. (3.6)

Combine (3.2) and (3.6) to derive that

E[V (Yt)|Yt−1 = y] ≤ ρV (y) + α0m.

Since V (y) → ∞ as ‖y‖ → ∞, there are some constants ρ′, ρ < ρ′ < 1, ε > 0, k > 0 and
MK < ∞ such that for the compact set K = {x : ‖x‖ ≤ k}, the following two inequalities
hold:

E[V (Yt)|Yt−1 = y] ≤ ρ′V (y)− ε, y ∈ Kc, (3.7)

and

sup
y∈K

E[V (Yt)|Yt−1 = y] ≤MK . (3.8)

Thus Yt satisfies the drift condition.

Lemma 3.5 Suppose the Assumption A1 and A2 hold. Then the process Yt given in equa-
tion (3.1) is φ-irreducible and aperiodic.
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Proof. For given Yt−1 = y = (x1, · · · , xp, z1, · · · , zp, w1, · · · , wp) ∈ R+
3p, k(y) := α0 +∑p

i=1(aixi + bizi + βiwi) > 0, we have that

P (y,G)

= P (Yt ∈ G|Yt−1 = y)

= αP ((k(y)e+δt , x1, · · · , xp−1, 0, z1, · · · , zp−1, k(y), w1, · · · , wp−1) ∈ G|et > 0)

+ (1− α)P ((0, x1, · · · , xp−1, k(y)e−δt , z1, · · · , zp−1, k(y), w1, · · · , wp−1) ∈ G|et < 0)

= α

∫
G

f1(y, u1)dλ1(u) + (1− α)

∫
G

f2(y, up+1)dλ2(u) (3.9)

where α = P (et > 0), u = (u1, · · · , u3p),

f1(y, w) =
1

α
g((

w

k(y)
)
1/δ

)
w(1−δ)/δ

δ(k(y))1/δ
I{w>0},

f2(y, w) =
1

1− α
g(−(

w

k(y)
)1/δ)

w(1−δ)/δ

δ(k(y))1/δ
I{w>0},

λ1 = µ(u1)

p−1∏
i=1

δxi
(ui+1)δ0(up+1)

p−1∏
i=1

δzi(up+i+1)δk(y)(u2p+1)

p−1∏
i=1

δwi
(u2p+i+1),

λ2 = δ0(u1)

p−1∏
i=1

δxi
(ui+1)µ(up+1)

p−1∏
i=1

δzi(up+i+1)δk(y)(u2p+1)

p−1∏
i=1

δwi
(u2p+i+1),

and δx denotes the degenerate measure on x. Here f1(y, w) and f2(y, w) are conditional
probability density functions of k(y)e+δt given et > 0 and k(y)e−δt given et < 0, respectively.

Choose ε > 0 arbitrary and fix. Let K be a compact set in the equation (3.7) and (3.8).
From the fact that 0 < α0 ≤ k(y) ≤ b < ∞, for some constant b if y ∈ K, there exists a
compact set K1 satisfying K ⊂ K1 and

sup
y∈K

P (y,Kc
1) ≤ ε. (3.10)

Moreover, we have that

sup
y∈K

P (k(y)e+δt ∈ (0, a)) ≤ P (e+δt ∈ (0, a/α0))

and then we may choose a > 0 so that

sup
y∈K

P (k(y)e+δt ∈ (0, a)) ≤ ε, sup
y∈K

P (k(y)e−δt ∈ (0, a)) ≤ ε.

Take C̄ = {u|0 < u1 < a, 0 < up+1 < a}, C = {u|u1 ≥ a, up+1 ≥ a}. Then

sup
y∈K

P (y, C̄) ≤ ε (3.11)
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and for some constant m <∞,

max{f1(y, w), f2(y, w)} ≤ m, y ∈ K,w ∈ K1 ∩ C. (3.12)

Now, for any decreasing sequence of compact sets Gn, Gn ↓ ∅, we have that

sup
y∈K

P (y,Gn) ≤ sup
y∈K
{P (y,Gn ∩K1 ∩ C) + P (y, C̄) + P (y,Kc

1)}

≤ 2ε+ sup
y∈K

P (y,Gn ∩K1 ∩ C)

≤ 2ε+mµ(Gn)

≤ 3ε, (3.13)

for sufficient large n. The 2nd inequality in (3.13) follows from (3.10) and (3.11) and the
3rd inequality is true because of (3.9) and (3.12).

Therefore limGn↓∅ supy∈K P (y,Gn) = 0 holds and by applying Lemma 3.2, Lemma 3.4
and Theorem 2.2, the proof of irreducibility of Yt is completed.

On the other hand, Lemma 3.2 ensures the irreducible Markov chain Yt in (3.1) has a
unique strictly stationary solution and then P t(x, dy) converges weakly to a distribution
π(dy), say as t → ∞ and π is independent on a starting state x. Hence we may choose a
compact set C and a large n such that π(C) > 0 and

Pn(x,C) > 0 and Pn+1(x,C) > 0, ∀x ∈ C, (3.14)

which implies that Yt is aperiodic. The proof is accomplished.

Theorem 3.1 Let the Assumption A1 and A2 hold. Then hδt and εt are geometrically
ergodic.

Proof. Combining Lemma 3.3-3.5 and Theorem 2.1 yields that Yt is a geometric ergodic
process and so are hδt and εt.

Due to its importance, we state the following theorem in which the higher order moments
condition is given. Note that A⊗m = A ⊗ A ⊗ · · · ⊗ A( m factors) where ⊗ denotes the
Kronecker product.

Theorem 3.2 The necessary and sufficient condition for E(|εt|mδ) <∞ is ρ[E(A⊗mt )] < 1.

Proof. Since all elements of At, Bt and Yt are nonnegative, proof can be derived by adopting
the same manner as that of Theorem 2.1 in Ling and McAleer (2002) and is omitted.
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