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Abstract
The exponential continuous time GARCH(p, q) model for financial assets suggested by Haug and Czado

(2007) is considered, where the log volatility process is driven by a general Lévy process and the price process
is then obtained by using the same Lévy process as driving noise. Uniform ergodicity and β-mixing property of
the log volatility process is obtained by adopting an extended generator and drift condition.

Keywords: Exponential continuous time GARCH(p, q) model, stationarity, uniform ergodicity, α-
mixing, β-mixing.

1. Introduction

Discrete time stochastic volatility models and GARCH processes which are capable of capturing some
important stylized features such as jumps, heavy-tailedness, volatility clustering and dependence with-
out correlation have been widely used in modeling financial volatility. Recently, however, financial
data are treated mostly in continuous time. Continuous time processes are particularly appropriate for
modeling irregularly-spaced and ultra high frequency data as they are useful in financial applications
such as option pricing.

The continuous time GARCH(p, q) process is suggested by specifying the log-volatility pro-
cess as the continuous time ARMA(q, p − 1) process, which is the continuous time analogue of an
ARMA(q, p − 1) process (see Brockwell, 2001; Brockwell et al., 2006; Lindner, 2007).

Empirical observations show that stock returns are negatively correlated with changes in returns
volatility. To represent this leverage effect, the following discrete time exponential GARCH(p, q)
model is suggested by Nelson (1991);

Yn = σnen,

log
(
σ2

n

)
= µ +

p∑
k=1

βk f (en−k) +
q∑

k=1

αk log
(
σ2

n−k

)
. (1.1)

Here, f (en) := θen + γ[|en| − E(|en|)] with real coefficients θ and γ, E| f (e1)| < ∞ and Var( f (e1)) < ∞,
(en)n∈Z is a sequence of independent identically distributed random variables with E(e1) = 0 and
Var(e1) = 1. We also assume that p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp are constants in R with αq , 0,
βp , 0 and that the autoregressive polynomial ϕ(z) := 1 − α1z − · · · − αqzq and the moving average
polynomial ψ(z) := β1+β2z+· · ·+βpzq−1 have no common zeros and that ϕ(z) , 0 on {z ∈ C||z| ≤ 1}. A
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continuous time version of the exponential GARCH(ECOGARCH)(p, q) model is proposed by Haug
and Czado (2007), where the log volatility process is defined as the continuous time ARMA(q, p − 1)
process, and the stationarity, α-mixing and moment properties of the process are investigated.

In this paper, we consider the ECOGARCH(p, q) model and prove the V-uniform ergodicity and
β-mixing property of the log volatility process. α-mixing property for a equidistance sequence of
non-overlapping returns can be derived from β-mixing property of log volatility process.

2. Preliminaries

Let L = (Lt)t≥0 be a time homogeneous càdlàg Lévy process with jumps ∆Lt = Lt − Lt−, t ≥ 0 defined
on (Ω,F , P) to R starting from the origin. Denote by (b, τ2, ν) the characteristic triple of L. The Lévy
measure ν is a nontrivial σ-finite measure on R satisfying ν({0}) = 0 and

∫
R min(1, |z|2)ν(dz) < ∞.

For a Lévy process L with zero mean, finite variance and nonzero parameters θ and γ, we define
the driving process M = (Mt)t≥0 of the log volatility process by

Mt :=
∫

R−{0}
h(x)ÑL(t, dx), t ≥ 0

with h(x) := θx + γ|x|. Here ÑL(t, dx) is the compensated Poisson random measure defined by

ÑL(t, dx) := NL(t, dx) − tν(dx)

with NL(t, dx) as the associated Poisson random measure for △L. The characteristic triple of M is
(γM , 0, νM) where γM = −

∫
|x|>1 x νM(dx), νM = ν ◦ h−1 (see Applebaum, 2004, p.94).

The following ECOGARCH(p, q) process corresponding to the discrete time EGARCH(p, q) pro-
cess of (1.1) is defined by specifying the log-volatility process as a CARMA(q, p − 1) process.

Definition 1. (Haug and Czado, 2007) Suppose that L has zero mean and finite variance. ECOGA
RCH(p, q) process (Gt)t≥0 is defined by

dGt := σt−dLt, t > 0, G0 = 0, (2.1)

where the log-volatility process log(σ2
t )t≥0 is a CARMA(q, p− 1) process, 1 ≤ p ≤ q, with mean µ ∈ R

and state space representation

log
(
σ2

t

)
:= µ + bT Xt, t > 0, log

(
σ2

0

)
= µ + bT X0, (2.2)

dXt = −AXtdt + IqdMt, t > 0, (2.3)

where X0 ∈ Rq is independent of the driving Lévy process M and bT is the transpose of b. The q × q
matrix A, the vectors b ∈ Rq, and Iq ∈ Rq are defined by

A =



0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
aq aq−1 aq−2 · · · a1


, b =



b1
b2
...

bq−1
bq


, Iq =



0
0
...
0
1


with coefficients a1, . . . , aq, b1, . . . , bq ∈ R, where aq , 0, bp , 0, and bp+1 = · · · = bq = 0.
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The solution of (2.3) is given by

Xt = e−AtX0 +

∫ t

0
e−(t−s)AIqdMs, t > 0. (2.4)

Obviously, X = (Xt)t≥0 in (2.4) is a Markov process whose sample path is càdlàg.
From now on, let νM denote the Lévy measure for the Lévy process IqM for notational simplicity.

Writing A = (ai j)
q
i, j=1, x = (x1, x2, . . . , xq)T , ∂ j = ∂/∂x j, the infinitesimal generatorA of X is given by

A f (x) = −
q∑

i, j=1

ai jx j∂i f (x) + γM∂q f (x) +
∫

Rq

 f (x + z) − f (x) −
q∑

i=1

zi∂i f (x)I|z|≤1(z)

 νM(dz), (2.5)

since the Gaussian variance of the Lévy process M is zero. A acts on the set of all real-valued C2(Rq)
functions with compact support. f ∈ C2(Rq) implies that all the first and second partial derivatives of
f are continuous.

Let (Xt)t≥0 be a continuous time Markov process with state space Rq and transition probability
function Pt(x, A) = P(Xt ∈ A|X0 = x), x ∈ Rq, A ∈ B(Rq).

A Markov process (Xt)t≥0 is called V-uniformly ergodic, where V ≥ 1 is a measurable function on
Rq, if there exists a unique invariant measure π for Pt(· , ·) such that∥∥∥Pt(x, ·) − π(·)

∥∥∥
V ≤ V(x)dρt, t ≥ 0, x ∈ Rq (2.6)

for some constants d < ∞, 0 < ρ < 1. Here the V-norm ∥ · ∥V is defined for any signed measure µ by
∥µ∥V := sup|g|≤V |

∫
g(y)µ(dy)|.

We denote by D(A) the set of all functions V : Rq → R+ for which there exists a measurable
function U : Rq → R+ such that, for each x ∈ Rq, t > 0,

Ex[V(Xt)] = V(x) + Ex

[∫ t

0
U(Xs)ds

]
, (2.7)∫ t

0
Ex[|U(Xs)|]ds < ∞. (2.8)

We writeAV := U and callA the extended generator of the process (Xt)t≥0.
For each positive integer m, let Om = {x : |x| < m} and T m = inf{t ≥ 0 : |Xt | ≥ m}, i.e., the first

entrance time to Oc
m. Define Xm

t = XtI{t<T m} + ∆mI{t≥T m}, where ∆m is any fixed element in Oc
m. Define

AmV(x) = IOm (x) · AV(x).
A nonnegative measurable function V ∈ D(Am) is called a norm-like function if V(x) → ∞ as

x→ ∞.
The following theorem plays a crucial role in proving the V-uniform ergodicity of a continuous

time Markov process.

Theorem 1. (Theorem 6.1 in Meyn and Tweedie, 1993b) Suppose that (Xt)t≥0 is a right pro-
cess, and that all compact sets are petite for some skeleton chain. If there exist a norm-like function
V ≥ 1, constants c > 0 and d < ∞, such that

AmV(x) ≤ −cV(x) + d, x ∈ Om, (2.9)

then (Xt)t≥0 is V-uniformly ergodic.
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Recall that V-uniformly ergodic processes are geometrically ergodic if
∫

V(x)π(dx) < ∞ for the
invariant measure π, and the exponential convergence of (2.6) is equivalent to an exponential rate of
mixing for the process.

Mixing properties play an important role in proving asymptotic results and are studied in literature,
e.g., Doukhan (1994), Bradley (2005), Haug and Czado (2007), Masuda (2007) etc. For the process
(Xt)t≥0, we define F X

[s,t] = σ(Xu : s ≤ u ≤ t) and

αX(t) = sup
u≥0

sup
{
|P(A ∩ B) − P(A)P(B)| : A ∈ F X

[0,u], B ∈ F X
[u+t,∞)

}
,

βX(t) = sup
u≥0

E
[
sup

{∣∣∣∣P (
B|F X

[0,u]

)
− P(B)

∣∣∣∣ : B ∈ F X
[u+t,∞)

}]
.

X is called α-mixing (β-mixing) if αX(t) → 0 (βX(t) → 0) as t → ∞. If αX(t) ≤ Ke−at(βX(t) ≤ Ke−at)
for some a > 0 and K > 0, then X is called exponentially α-mixing (exponentially β-mixing).

For detailed pertinent properties of Lévy processes, see Sato (1999) and Applebaum (2004). For
terminologies and relevant results on Markov chain theory, we refer to Meyn and Tweedie (1993a,
1993b) and references therein.

3. Uniform Ergodicity of XtXtXt

In this section we assume that the Lévy process L has mean zero and finite variance and consider the
processes σ2

t , logσ2
t , Xt and Gt which are generated by equations (2.1)–(2.4). Given X = (Xt)t≥0 is

a time homogeneous Markov process whose sample path is càdlàg. Let Pt(x, dy) be the probability
transition function of X. Note that X is a non-explosive Borel right process since Pt maps Borel
functions to Borel functions for each t ≥ 0, where (Pt f )(x) :=

∫
f (y)Pt(x, dy).

Theorem 2. (Brockwell and Marquardt, 2005) If X0 is independent of {IqMt, t ≥ 0}, then X is
strictly stationary if and only if the eigenvalues of the matrix A all have strictly positive real parts and
X0 has the distribution of

∫ ∞
0 e−AsIqdMs. The strict stationarity of X implies the strict stationarity of

(σ2
t )t≥0 and (logσ2

t )t≥0.

Following is our main theorem.

Theorem 3. Suppose that the eigenvalues of the matrix A all have strictly positive real parts and
that

∫
|z|>1 |z|

pνM(dz) < ∞ for some p > 0. Then X is V-uniformly ergodic. If X0 is independent of

{IqMt, t ≥ 0} and X0 has the distribution of
∫ ∞

0 e−AsIqdMs, then X is β-mixing with exponential decay
rates.

Proof: Note that Xt in (2.4) is a weak Feller process. Let X(r) = (X(r)
n )n∈N0 denote the discrete time

Markov chain regularly sampled from (Xt)t≥0 at the time points 0, r, 2r, . . . for a constant r > 0. This
X(r) is called the r-skeleton chain. Under the given assumptions, Pt(x, A) → π(A) as t → ∞ for some
limiting distribution π (Masuda, 2004, Proposition 2.2) and hence the skeleton chain X(r) for some
r > 0 is irreducible and aperiodic. Therefore, every compact set is petite for X(r). In order to obtain
the desired results we need to find a proper measurable function V : Rq → R+ such that V and A
given in (2.5) satisfy the relations (2.7)–(2.9).

For some p (0 < p < 1), we define C2-function V : Rq → R+ by V(x) = |x|p + 1, |x| > 1 with
continuous first and second partial derivatives on |x| ≤ 1.
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Recall that the gradient vector of f at x is denoted by ∇ f (x) and defined by the formula ∇ f =
(∂1 f , ∂2 f , . . . , ∂q f ). For each B bounded below, N(t, B) denotes a Poisson random measure with in-
tensity νM(B) and let Ñ(t, B) := N(t, B) − tνM(B).

We may rewrite the equation (2.5) as

AV(x) = ∇V(x)(−Ax + IqγM) +
∫
|z|>1

(V(x + z) − V(x))νM(dz)

+

∫
|z|≤1

(V(x + z) − V(x) − ∇V(x) · z) νM(dz)

= ∇V(x)(−Ax + IqγM) + I + II. (3.1)

In this proof, we use K < ∞ as the universal constant and K may vary from line to line.
If |x| > 1, then

|I| =
∣∣∣∣∣∣
∫
|z|>1

(V(x + z) − V(x))νM(dz)

∣∣∣∣∣∣
≤

∫
|z|>1,|x+z|>1

|z|pνM(dz) +
∫
|z|>1,|x+z|≤1

|V(x + z) − V(x)|νM(dz)

≤
∫
|z|>1
|z|pνM(dz) +

∫
|z|>1

(K + |z|p) νM(dz)

≤ 2
∫
|z|>1
|z|pνM(dz) + KνM(|z| > 1)

< ∞. (3.2)

The first inequality in (3.2) follows from | |x + z|p − |x|p | ≤ |z|p, (0 < p ≤ 1). Since for fixed z, |z| > 1,
I|x+z|≤1 = 0 for |x| > 1 + |z|, the second inequality in (3.2) can be obtained.

For |x| ≤ 1, we have that

|I| =
∫
|z|>1,|x+z|>1

|x + z|pνM(dz) + KνM(|z| > 1)

≤
∫
|z|>1
|z|pνM(dz) + KνM(|z| > 1). (3.3)

Now since V(x + z) − V(x) − (z · ∇)V(x) = 1/2(z · ∇)2V(xα), xα = x + αz, 0 ≤ α ≤ 1, by Lagrange
remainder theorem,

II =
1
2

∫
|z|≤1

q∑
i=1

q∑
j=1

ziz j∂ j∂iV(xα)νM(dz).

For the case that |x| ≤ 2, we have that

|II| ≤ 1
2

∫
|z|≤1

q∑
i=1

q∑
j=1

|ziz j∂ j∂iV(xα)|νM(dz)

≤ sup
{|z|≤1,0≤α≤1}

{|∂ j∂iV(xα)|}
∫
|z|≤1

q∑
i=1

q∑
j=1

|ziz j| νM(dz)
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≤ K
∫
|z|≤1
|z|2νM(dz)

< ∞. (3.4)

Boundedness of sup{|z|≤1,0≤α≤1}{|∂ j∂iV(xα)|} follows from continuity of the second derivative of V . On
the other hand, if |x| > 2 and |z| ≤ 1, then |x + αz| ≥ 1 and it can be derived by simple calculation that

∂ j∂iV(xα) =
 p(p − 2)xix j|x + αz|p−4, if i , j,

p|x|p−2 + p(p − 2)x2
i |x + αz|p−4, if i = j

and ∂ j∂iV(xα) is bounded, since 0 < p < 1. Therefore, we have that

|II| ≤ K
∫
|z|≤1
|z|2νM(dz) < ∞. (3.5)

Now, ∇V(x) = p|x|p−2xT for |x| > 1 and xT Ax ≥ k|x|2 for some k > 0 for all x ∈ Rq imply that

∇V(x)(−Ax + IqγM) = p|x|p−2
(
−xT Ax + xT IqγM

)
≤ p|x|p−2

(
−k|x|2

)
+ p|x|p−2xT IqγM

= −kp|x|p + pγM |x|p−1. (3.6)

From the definition of V(X) and (3.6), ∇V(x)(−Ax + IqγM) is bounded on |x| ≤ 1 and

∇V(x)
(
−Ax + IqγM

)
≤ −kpV(x) + K, |x| > 1. (3.7)

Combining (3.1)–(3.7) yields for some constants c > 0 and d > 0,

AV(x) ≤ −cV(x) + d. (3.8)

Now, it remains to show that V is a norm-like function, i.e., V is in the domain of Am. Note that
inequality in (3.8) implies that Ex[V(Xt)] ≤ ectV(x). Since Xt is a finite variation process with right
continuous paths and V ∈ C2, Itô formula (see Protter, 2005, p.78) yields that

V
(
Xm

t

)
− V

(
Xm

0

)
=

∫ t

0
∇V

(
Xm

s−
)
dXm

s +
∑

0<s≤t

(
V
(
Xm

s

)
− V

(
Xm

s−
)
− ∇

(
Xm

s−
)
△Xm

s

)
=

∫ t∧T m

0
∇V

(
Xm

s−
)(
− AXs + IqγM

)
ds +

∫ t∧T m

0
∇V

(
Xm

s−
) (∫

|z|≤1
zÑ(ds, dz) +

∫
|z|>1

zN(ds, dz)
)

+

∫
Rq

(
V
(
Xm

s− + z
)
− V

(
Xm

s−
)
− ∇V

(
Xm

s−
)
z
)
Ñ(t, dz) −

∫ t

0

∫
Rq
∇V

(
Xm

s−
)
zI|z|>1νM(dz)ds

=

∫ t∧T m

0
AmV

(
Xm

s−
)
ds +

∫ t∧T m

0

∫
Rq

V
(
Xm

s− + z
)
− V

(
Xm

s−
)
Ñ(ds, dz). (3.9)

Now taking expectation on both sides of the equation (3.9), we obtain that

Ex

[
V
(
Xm

t

)]
= V(x) + Ex

[∫ t

0
AmV

(
Xm

s−
)
ds

]
. (3.10)
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(3.8) and (3.10) imply that V(x) is a norm-like function satisfying the inequality (2.9). Hence by
Theorem 1 (see also Theorem 5.2 in Down et al., 1995), X is V-uniformly ergodic and X with π as its
initial distribution is exponentially β-mixing. Moreover,

∫
V(z)π(dz) < ∞. �

For self-completeness of this paper, we state the following theorem.

Theorem 4. Under the same assumption of Theorem 3, the following mixing properties hold; (1)
(logσ2

t )t≥0 and (σ2
t )t≥0 are exponentially α-mixing. (2) The discrete time process (G(r)

nr )n∈N where
G(r)

t := Gt −Gt−r =
∫ t

t−r σs−dLs, t > r > 0 is exponentially α-mixing and ergodic.

Proof: Let for Xt = (Xt1, Xt2, . . . , Xtq)T , define that Yt = (Yt1,Yt2, . . . ,Ytq)T = B · Xt where

B =



b1 b2 b3 · · · bq

0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0
0 0 0 · · · 1


.

Then Yt = B · Xt = (logσ2
t , Xt2, . . . , Xtq)T and

Yt = B · Xt

= e−BAB−1tBXs +

∫ t

s
e−BAB−1(t−u)BIqdMu.

(1) If all eigenvalues of A have positive real parts, so do all eigenvalues of BAB−1. Therefore, applying
Theorem 3 yields that Yt is V-uniformly ergodic for properly defined function V and β-mixing. Since
logσ2

t is the first coordinate of Yt, it is also V-uniformly ergodic and β-mixing. Mixing property of
σ2

t follows from the fact that log function is continuous. (2) For details, see p.12 in Haug and Czado
(2007). �
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