• Title/Summary/Keyword: Explosion work

Search Result 143, Processing Time 0.025 seconds

JOB Scheduling Analysis in FMC using TPN (TPN을 이용한 FMC의 JOB 스케쥴링 분석)

  • 안광수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.3
    • /
    • pp.13-19
    • /
    • 1999
  • In this paper, we suggests a WIP (Work In Process) of FMC (Flexible Manufacturing Cell) analysis methods based on the TPN (Time Petri Nets) unfolding. Unfolding of PN is a partial order-based method for the verification of concurrent system without the state space explosion. The aim of this work is to formulate the general cyclic state scheduling problem to minimize the WIP to satisfy economical constraints. The method is based on unfolding of the original net into the equivalent acyclic description.

An Analytic Hierarchy Process on the Cause of Gun Powder Blasting Accicdent (화약류 발파사고원인의 AHP기법에 의한 분석)

  • 서승록;이정훈
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2003
  • This research analyzes blasting accident cause that is happening construction and engineering works spot taking advantage of AHP (Analytic Hierarchy Process) techniques as metrical. Result that apply AHP with blasting accident that is happened the South Korea and Japan, appeared by thing which relative importance by human cause is highest. Specially, it is observance of safety rule that dominate the highest ratio among of human cause, and if observe a little, causes that prevention is possible are much. By result of this research, necessity of safety education is important first of all for prevention of blasting accident. Also, thorough safety control plan of during work and enough on-the-slut probe before work should be established. Because explosives uses gunpowder and explosive high energy, work by qualified person is essential. Ant it may become help to minimize dissipation of important life and property preventing beforehand explosion accident of gunpowder.

The Factors Governing Envlronment and Safety in Underground Spaces (지하공간의 환경 및 안전관리 요소)

  • 김복윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10b
    • /
    • pp.133-162
    • /
    • 1993
  • The environment of underground spaces might be considered in view of working environment during the construction and living environment after completion of the construction work. For controlling environment of underground space, an appropriate measures have to be taken on the governing factors such as air flow, dust, gases, heat, radiation, noise, illumination and water. The more critical matter, in underground environmental point of view, is underground disasters such as fire, gas explosion and water inrush. This paper presents the general introduction of these factors mentioned above and some outcomes of research works as of now.

  • PDF

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne (노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

Pyrolysis Characteristic and Ignition Energy of High-Density Polyethylene Powder (고밀도 폴리에틸렌 분진의 열분해성과 착화에너지)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this work is to provide new experimental data on the pyrolysis characteristics and the minimum ignition energy (MIE) by using the same high-density polyethylene (HDPE) powder in domestic HDPE dust explosion accident. To evaluate the explosion sensitivity of HDPE, thermo-gravimetric analysis (TGA), differential scanning calorimeter (DSC) and MIE apparatus (MIKE-3, K$\ddot{u}$hner) was conducted. The measurements showed the volume median diameter of $61.6{\mu}m$ but the particle number density of 98 % in the range $0.4{\sim}4{\mu}m$. The ignition temperature from the results of TGA and DSC in HDPE dust layers was observed in the range of $380{\sim}490^{\circ}C$. MIE was measured under 1 mJ in the HDPE dust concentration of $1200{\sim}1800g/m^3$, it was found that the ratio of particle number density in the range $0.4{\sim}4{\mu}m$ was very high (98%).

Determination of Blast Load on the Boreholes Wall Using Decoupled Charge (Decoupling 장전시 천공벽에 작용하는 발파하중의 산정)

  • Kim, Sang-Gyun;Lee, In-Mo;Choi, Jong-Won;Kim, Shin;Lee, Du-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

Numerical analysis of fs laser ablation of metals (금속의 펨토초 어블레이션의 수치해석)

  • Oh B.K.;Kim D.S.;Kim J.G.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.657-658
    • /
    • 2006
  • Although there are many numerical models to simulate fs laser ablation of metals, no model can analyze the ablation phenomena over a wide range of fluence. In this work, a numerical code for simulating the fs laser ablation phenomena of metals has been developed. The two temperature model is employed to predict the ablation rate and the crater shape of metals using phase explosion mechanism in the relatively high fluence regime. Also, the ultrashort thermoelastic model is used for the low fluence regime to account for spallation of the sample by high strain rate. It has been demonstrated that the thermoelastic stress generated within the sample can exceed the yield stress of the material even near the threshold fluence. Numerical computation results are compared with the experiment for Cu and Ni and show good agreement. Discussions are made on the hydrodynamic model considering phase change and hydrodynamic flow.

  • PDF

Agent Oriented Business Forecasting

  • Shen, Zhiqi;Gay, Robert
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.156-163
    • /
    • 2001
  • Business forecasting is vital to the success of business. There has been an increasing demand for building business forecasting software system to assist human being to do forecasting. However, the uncertain and complex nature makes is a challenging work to analyze, design and implement software solutions for business forecasting. Traditional forecasting systems in which their models are trained based on small collection of historical data could not meet such challenges at the information explosion over the Internet. This paper presents an agent oriented business forecasting approach for building intelligent business forecasting software systems with high reusability. Although agents have been applied successfully to many application domains. little work has been reported to use the emerging agent oriented technology of this paper is that it explores how agent can be used to help human to manage various business forecasting processes in the whole business forecasting life cycle.

  • PDF

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

A Study on the Prevention Measures against Fire and Explosion Accidents during Splash Filling in Batch Process (회분식 공정에서 스플래쉬 필링(Splash Filling) 작업으로 인한 화재·폭발 사고 예방대책에 관한 연구)

  • Kim, Sang Ryung;Lee, Dae Jun;Kim, Jung Duk;Kim, Sang Gil;Yang, Won Baek;Rhim, Jong Guk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.33-39
    • /
    • 2020
  • In general, in a batch reaction process in which products are made using flammable liquids, splash filling is used to clean the walls of the reactor by spraying flammable liquids, which are raw materials used for product, during cleaning of the reactor after work. During this process, mist of flammable liquid is generated, the lower limit of explosion is lowered, and fire·explosion may occur due to discharges caused by various types of complex charges, such as flow charge, collision charge, and ejection charge. Therefore, based on the recent accident case, to identify the risk when working in the form of splash filling with toluene in a batch process and perform an explosion impact analysis using the TNT equivalent method After that, we will analyze the accident results and suggest preventive measures such as constant purge system, improvement of cleaning method, and use of tantalum to prevent such accident.