A regression model represents the relationship between explanatory and response variables. In real life, explanatory variables often affect a response variable with a certain time lag, rather than immediately. For example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models have been successfully used to model various relationships, most of them do not consider the time lags between explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models, which automatically finds the time lags between explanatory and response variables. The proposed method finds out which of the past values of the explanatory variables minimize the error of the model, and uses the found values to determine the time lag between each explanatory variable and response variables. After determining the time lags between explanatory and response variables, the proposed method trains the deep learning model again by reflecting these time lags. Through various experiments applying the proposed method to a few deep learning models, we confirm that the proposed method can find a more accurate model whose error is reduced by more than 60% compared to the original model.
Communications for Statistical Applications and Methods
/
제20권2호
/
pp.129-136
/
2013
Linear regression is the most basic statistical model for exploring the relationship between a numerical response variable and several explanatory variables. Logistic regression secures the role of linear regression for the dichotomous response variable. In this paper, we propose a biplot-type display of the multivariate data guided by the linear regression and/or the logistic regression. The figures show the directional flow of the response variable as well as the interrelationship of explanatory variables.
Communications for Statistical Applications and Methods
/
제16권3호
/
pp.495-500
/
2009
Two diagnostic plots, added variable plot and partial residual plot, are proposed when a new explanatory variable is linearly added to constrained regressions. They are useful for investigating the effect of adding an explanatory variable to the constrained regression. They visually give an overall impression of the strength of linear relationship between response variable and added variable. A numerical example is provided for illustration.
단순회귀와 다중회귀에서 회귀계수의 의미는 차이가 있고 회귀계수의 추정값은 같지 않을 뿐 아니라 그 부호가 서로 다른 경우도 발생한다. 회귀모형에서 설명변수의 상대적 기여도의 파악은 회귀분석의 수행의 중요한 부분이다. 표준화 회귀모형에서 표준화 회귀계수는 해당 설명변수를 제외한 나머지 설명변수의 값이 고정되어있는 상황에서 설명변수가 표준편차만큼 증가하였을 때 반응변수가 표준편차를 기준으로 얼마나 변화했는가로 해석할 수 있지만 표준화 회귀계수의 크기가 각 설명변수의 상대적 중요도를 나타내는 척도라고 할 수 없음은 잘 알려져 있다. 본 논문에서는 다중회귀에서 회귀계수의 추정량을 상관계수와 결정계수의 함수로 나타내고 이를 추가적인 설명력과 추가적인 결정계수의 관점에서 생각해 본다. 또한 다양한 산점도에서의 상관계수와 회귀계수 추정값의 관계를 알아보고 설명변수가 두 개인 경우에 구체적으로 적용해 본다.
Journal of the Korean Data and Information Science Society
/
제25권2호
/
pp.403-410
/
2014
이분형 로지스틱 회귀분석은 양적 혹은 질적 설명변수를 이용해서 이분형 반응변수를 설명하는 하나의 통계적인 기법이다. 이 모형에서는 반응변수가 1이 될 확률을 설명변수들의 선형결합의 변환(혹은 함수)으로 설명하고자 한다. 이 개념에 대한 이해가 비통계학자들이 이분형 로지스틱 회귀모형을 이해하는데 있어서 넘어야 할 커다란 장벽 중의 하나이다. 이 연구에서는 이분형 로지스틱 회귀모형의 필요성을 엑셀 VBA를 이용하여 설명하는 교육도구를 개발하고자 한다. 반응변수가 1이 될 확률을 설명변수의 선형함수로 모형화 할 때의 문제점과 선형결합에 대한 변환을 통해 이 문제점이 어떻게 해소되는지 보여준다.
통계적 공정관리에서 프로파일 관리도란 다수의 품질 특성치 간 함수관계의 변화를 탐지하는 것을 말한다. 두 변수 간 선형의 관계가 있는 경우, 선형 프로파일을 가정하고 절편과 기울기가 일정한지 모니터링한다. 이때 선형 프로파일에 관한 대부분의 기존 연구에서는 모든 프로파일에서 설명변수의 관측치가 동일하다고 가정한다. 그러나 프로파일마다 설명변수의 값이 랜덤하게 관측되는 경우도 존재한다. 본 논문에서는 단순 선형 프로파일 모니터링에서 설명변수가 프로파일마다 랜덤하게 관측된다는 가정하에 기존의 방법을 확장 적용하고자 한다. 모의실험을 통해 제안한 방법의 탐지 성능을 확인하고 네트워크 침입 탐지 알고리즘 성능을 비교하기 위한 NSL-KDD 데이터를 이용하여 제안된 침입 탐지 결과를 비교해 보았다.
기하학적인 방법을 사용하여 다중회귀모형 자료를 그래프로 구현하는 회귀제곱합 그림을 제안한다. 두 설명변수의 회귀제곱합은 한 변수의 단순회귀제곱합과 한 변수의 회귀모형에 다른 변수가 추가되었을 때 회귀제곱합의 증가분의 합으로 표현되는 관계식을 이용하여 회귀제곱합 그림을 반원의 형태로 구현한다. 회귀제곱합 그림은 설명변수에 대응하는 벡터로 표현되고, 반응변수에 영향력 정도를 시각적으로 구현하는 그래픽적인 방법이다. 수평축에 가까운 벡터에 대응하는 설명변수가 반응변수에 더 많은 영향을 주는 설명변수라고 판단할 수 있다 또한 두개의 설명변수에 대응하는 벡터 사이의 각도 크기로 서프레션의 발생여부를 진단 가능하다.
Objective: The purpose of this study to investigate the correlations among the motor function, balance, and gait velocity and the strength that could explain the variation of gait velocity of chronic stroke survivors. Design: This was a cross-sectional cohort study. Methods: Thirty hemiplegic stroke survivors hospitalized in an inpatient rehabilitation center were participated. The muscle tone of ankle plantarflexor and muscle strength of ankle dorsiflexor were measured respectively with modified Ashworth scale (MAS) and hand-held dynamometer. And the motor recovery and function with Fugl-Meyer assessment (FMA), balance with Berg balance scale (BBS) and timed up and go (TUG) test were measured. Gait velocity was measured with GAITRite. The correlation among motor function, muscle tone, muscle strength, balance, and gait were analyzed. In addition, the strength of the relationship between the response (gait velocity) and the explanatory variables was analyzed. Results: The gait velocity had positive correlations with FMA, muscle strength, and BBS, and negative correlation with MAS and TUG. Regression analysis showed that TUG (𝛽=-0.829) was a major explanatory variable for gait velocity. Conclusions: Our results suggest that gait velocity had correlations with muscle strength, MAS, FMA, BBS, and TUG. The tests and measurements affecting the variation of gait velocity the greatest were TUG, followed by FMA, BBS, muscle strength, and MAS. This study shows that TUG would be a possible assessment tool to determine the variation of gait velocity in stroke rehabilitation.
설명변수와 반응변수 사이의 통계적 관계를 설명하기 위해 사용되는 회귀모형을 분석하는 방법을 회귀분석이라 한다. 본 논문에서는 독립변수와 종속변수에 대한 퍼지관계를 표현하는 퍼지회귀모형를 추정하기 위하여 이상치에 민감하지 않은 로버스트한 추정량인 Theil방법을 소개한다. Theil방법은 설명변수와 반응변수의 ${\alpha}$-수준집합의 각 성분으로 구성된 집합에서 선택한 임의의 두 쌍 자료로부터 계산된 변화율의 중위수를 두 변수에 대한 변화량의 추정량으로 간주한다. 본 논문에서 제안된 Theil방법이 최소자승법을 이용하여 추정된 퍼지회귀모형보다 더 정확할 수 있음을 예제를 통하여 확인한다.
MOHAMMED BASSOUDI;ABDERRAHMANE BELGUERNA;HAMZA DAOUDI;ZEYNEB LAALA
Journal of applied mathematics & informatics
/
제41권6호
/
pp.1341-1364
/
2023
This article introduces a method for estimating the conditional hazard function of a real-valued response variable based on a functional variable. The method uses local linear estimation of the conditional density and cumulative distribution function and is applied to a functional stationary ergodic process where the explanatory variable is in a semi-metric space and the response is a scalar value. We also examine the uniform almost complete convergence of this estimation technique.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.