

www.kips.or.kr Copyright© 2024 KIPS

Improving Deep Learning Models Considering the Time

Lags between Explanatory and Response Variables

Chaehyeon Kim and Ki Yong Lee*

Abstract

A regression model represents the relationship between explanatory and response variables. In real life,

explanatory variables often affect a response variable with a certain time lag, rather than immediately. For

example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models

have been successfully used to model various relationships, most of them do not consider the time lags between

explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models,

which automatically finds the time lags between explanatory and response variables. The proposed method

finds out which of the past values of the explanatory variables minimize the error of the model, and uses the

found values to determine the time lag between each explanatory variable and response variables. After deter-

mining the time lags between explanatory and response variables, the proposed method trains the deep learning

model again by reflecting these time lags. Through various experiments applying the proposed method to a few

deep learning models, we confirm that the proposed method can find a more accurate model whose error is

reduced by more than 60% compared to the original model.

Keywords

Deep Learning, Model Optimization, Regression Model, Time Lag

1. Introduction

In real life, some events affect other events with a certain time lag, rather than immediately. For

example, temperature, cloud cover, and humidity affect precipitation after a certain period. Advertising

expenditure also affects sales volume with a certain time lag. Similarly, the marriage rate affects the birth

rate after a certain period of time. We call the time difference in which one event affects another event

the time lag. Therefore, when we analyze the relationships between events, it is very important to consider

the time lags between those events, if present.

Recently, with the advent of deep learning techniques, many phenomena in social sciences, economics,

climate, natural science, etc. have been successfully modeled using deep learning models that are based

on artificial neural networks—e.g., multilayer perceptron (MLP), convolutional neural network (CNN),

and long short-term memory (LSTM). These deep learning models represent the complex relationships

between explanatory variables (i.e., independent or input variables) and response variables (i.e.,

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received March 14, 2022; first revision June 16, 2022; accepted July 16, 2022.
*Corresponding Author: Ki Yong Lee (kiyonglee@sookmyung.ac.kr)

Dept. of Computer Science, Sookmyung Women’s University, Seoul, Korea (7chaeny25@sookmyung.ac.kr, kiyonglee@sookmyung.ac.kr)
Current affiliation for author, Chaehyeon Kim, Dept. of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

https://doi.org/10.3745/JIPS.04.0312 ISSN 2092-805X (Electronic)

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

346 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

dependent or output variables). However, most of those models assume that explanatory variables affect

the response variable immediately and do not consider the time lags between explanatory and response

variables. For example, Fig. 1(a) shows an example of a training dataset used to train a deep learning

model, where ��, ��, … , �� are explanatory variables and � is the response variable. As described in Fig.

1(a), most of existing deep learning models assume that the current value of � is affected by the current

values of ��, ��, … , ��. However, as shown in Fig. 1(c) and 1(d), an explanatory variable may affect the

response variable with a certain time lag. For example, Fig. 1(c) indicates that the international oil prices

affect the system marginal prices (SMP) with a time lag of about half a year. Similarly, Fig. 1(d) implies

that the number of marriages affects the number of births with a time lag of about a year. In these cases,

it would be more desirable to consider the time lags between explanatory and response variables to build

a more accurate model. For example, Fig. 1(b) depicts that the values of �� and �� affect the value of �

after 2 observations and 1 observation, respectively. However, most existing deep learning models do not

automatically detect such time lags between explanatory and response variables, which degrades the

model performance. Although we have proposed the initial idea of identifying the time lags between

explanatory and response variables in [1], [1] considers only simple linear regression models.

(a) (b)

(c) (d)

Fig. 1. Examples of time lags between explanatory and response variables: (a) An example of a training

dataset, (b) The time lags between X_1, X_2,, X_n and Y, (c) The time lags between the oil price and

SMP, and (d) The time lags between the number of marriages and the number of births.

Therefore, in this paper, we propose an extension of existing deep learning models, which

automatically finds the time lags between explanatory variables ��, ��, … , �� and the response variable

�. The proposed method then reflects the found time lags to build a more accurate deep learning model.

For each explanatory variable ���� � 1,2, … , ��, the proposed method finds out which of the past w

values of �� minimizes the error between the model and the current value of �, and uses the found values

to determine the time lag between �� and �. After determining the time lags between ��, ��, … , �� and

� in this way, the proposed method trains the deep learning model again by reflecting these time lags to

build a more accurate model. As one of the most important advantages, the proposed method can be

applied to any deep learning model based on artificial neural networks in general without additional

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 347

restrictions. Through various experiments applying the proposed method to popular and representative

deep learning models including MLP, CNN, and LSTM on synthetic and real datasets, we show that the

proposed method can find a more accurate model whose error is reduced by more than 60% compared to

a model that does not consider the time lags between explanatory and response variables. Our

contributions are summarized as follows:

 For the first time, we propose a method to improve the performance of a given deep learning model

by considering the time lags between explanatory and response variables.

 We propose a new layer that can be added to an existing deep learning model that automatically

identifies the time lags between explanatory and response variables

 We show the performance improvement of the proposed method by applying the proposed method

to popular deep learning models on synthetic and real datasets.

The rest of the paper is organized as follows. In Section 2, we present related work on time lags and

briefly describe three popular and representative deep learning models used in the experiments. Section

3 describes the proposed method for automatically identifying the time lags between explanatory and

response variables. Section 4 presents experimental results on synthetic and real datasets to show the

effectiveness of the proposed method. Finally, Section 5 concludes the paper.

2. Related Work

2.1 Considering the Time Lags between Explanatory and Response Variables

The term "time lag" refers to the time interval between two related events occurring, such as the time

interval between marriage and childbirth and the time interval between cloud formation and rainfall. As

mentioned in Section 1, the marriage rate affects the birth rate a few years later. In this case, if we build

a model that predicts the birth rate from the marriage rate without considering the time lag between them,

we will end up with a model with low accuracy. However, there has been little research on building a

model by automatically identifying the time lags between explanatory variables ��,��, … ,�� and the

response variable �, and even recent studies proceed without considering time lags [2]. Previous studies

considering the time lags between explanatory and response variables are largely classified into the

following three categories:

1) Set the time lags between explanatory and response variables arbitrarily through prior knowledge:

For example, [3] builds a birth rate prediction model that predicts this year’s birth rate from some

statistics from a few years ago (e.g., 1 or 2 years ago). These types of methods do not automatically

identify the time lags between explanatory and response variables, but set the time lags manually.

However, setting the time lags arbitrarily does not guarantee the model with optimal performance.

2) Build a model for each possible time lag and then select the model with the best performance: For

example, [4] builds a linear regression model by including a variable representing the time lag

between explanatory variables and the response variable. However, [4] needs to set the value of

that variable for each possible time lag, which makes it difficult to apply in practice. More

specifically, if we have n explanatory variables ��,��, … ,�� and the number of possible time lags

for each explanatory variable is w, then we need to build a total of wn models and then find the

best model among them. Furthermore, this method is only applicable to linear regression models.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

348 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

3) Assign different weights to several time lags and find the best combination of weights that gives

the highest performance: For example, [5] constructs candidate combinations of weights for

several time lags (e.g., 1 month, 2 months, …, T months) and selects the best combination of

weights based on the square of correlation coefficient R2 of the linear regression model. However,

[5] needs to construct a lot of candidate combinations of weights and measure R2 for each

combination. More specifically, if we assign weights P1, P2, …, PT for T time lags (e.g., 1 month,

2 months, …, T months), where P1 + P2 + … + PT = 1, there can be a prohibitively large number

of candidate combinations of weights (e.g., P1 = 0.1, P2 = 0.2, …, PT = 0.5). Furthermore, this

method only considers linear regression models and does not consider deep learning models.

Therefore, to date, there is no special way to systematically identify the time lags between explanatory

and response variables, especially for deep learning models. This motivates our work.

2.2 Deep Learning Models

This section briefly describes three popular and representative deep learning models (i.e., MLP, CNN,

and LSTM) considered in this paper.

2.2.1 MLP

A MLP is the simplest form of a deep learning model, which consists of a number of layers. These are

an input layer, several hidden layers, and an output layer. Fig. 2 shows the architecture of an MLP. Each

layer also consists of a number of nodes (or neurons) and each node in one layer connects to every node

in the following layer with some weights. Each node in the input layer corresponds to an explanatory

variable ���� � 1, 2, … , ��. Each node in a hidden layer transforms the values from the previous layer

with a weighted sum followed by an activation function, which can be represented as
 � ������ �

���� � ⋯ � ���� � ��, where � is the number of nodes in the previous layer, ��, ��, … , �� represent

the values from the previous layer, ��, ��, … , �� represent the weights between the nodes in the previous

layer and this node, � represents the bias of this node, � represents the activation function (e.g., linear

activation, ReLU, sigmoid, hyperbolic tangent), and
 represents the output value of this node. The

output layer receives the output values from the last hidden layer and transforms them into a final output

value, which corresponds to the response variable �.

Fig. 2. The architecture of MLP.

Given a training dataset where each instance has the form ���, ��, … , ��,
�, where ��, ��, … , �� are the

values of the explanatory variables ��, ��, … , �� and
 is the value of the response variable �, an MLP

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 349

is trained to find the optimal parameters (the weight between nodes and the bias of each node) that

minimize the error between � and the output of the MLP for the input values ��, ��, … , ��. The MLP is

simple but widely used because of its ability to approximate complex functions between explanatory and

response variables.

2.2.2 CNN

A CNN [6] is a type of deep learning model originally proposed to process image data. Since the

original MLP basically processes one-dimensional data, when image data are used as input, the image

data should be flattened and made into one-dimensional data. In this process, the spatial and topological

information of the image is lost. A CNN takes 2- or 3-dimensional data as raw input and builds up layers

of features while maintaining the spatial and topological information of the input data. Consequently, a

CNN is typically used to identify spatial-invariant patterns.

As shown in Fig. 3, a CNN is composed of multiple layers of convolution layers and pooling layers

[7]. In the first convolution layer of the CNN in Fig. 3, several feature maps are obtained using multiple

filters (or kernels), each of which detects some specific type of feature over the input data. Next, the first

pooling layer reduces the dimensionality of each feature map. The two common pooling methods are

max and average pooling. The second convolution layer again obtain a number of feature maps from the

output of the first pooling layer using multiple filters. The second pooling layer then again reduces the

size of each feature map generated by the second convolution layer. Next, the output of the second

pooling layer is flattened into one-dimensional data, and finally, one or more fully connected layers are

applied with some activation function.

Although CNNs are widely used for classification problems [8], they can also be used for regression

problems [9]. For a classification problem, a softmax layer is typically used as the output layer of a CNN

to output the predicted probability of each class. On the other hand, for a regression problem, a fully-

connected layer can be used as the output layer of a CNN, where each node outputs an arbitrary

continuous value. In this case, the CNN extracts features from the input data using convolution layers

and pooling layers and then outputs continuous values to predict continuous response variables.

Fig. 3. The architecture of CNN. Adapted from [7].

Fig. 4. The architecture of LSTM.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

350 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

2.2.3 LSTM

LSTM [10] is one of the recurrent neural network (RNN) models where the output of nodes can be fed

back to the same nodes. The LSTM is a widely used deep learning model because it can solve the long-

term dependency problem of the traditional RNN. LSTM is mainly used to process sequence data such

as time series, natural language text, and speech. Fig. 4 shows the architecture of LSTM. Unlike the

traditional RNN, each unit of LSTM is composed of an input gate, a forget gate, and an output gate. The

LSTM solves the long-term dependency problem by adding a cell state to each unit in the network. The

cell state �� stores long-term information from the previous time steps. The LSTM uses the three gates

to remove or add information to ��. The forget gate determines which information from the previous cell

state ���� is forgotten. The forget gate receives the previous hidden state ℎ��� and the current input �� of

the unit, and outputs a vector ��, where each element is the output of the sigmoid function and has a value

between 0 and 1. If the value of an element is 0, all the information of the corresponding element in

���� is completely forgotten. If it is 1, all the information of the corresponding element in ���� is

remembered. Next, the input gate determines how much of the current input will be used. The input gate

receives ℎ��� and ��, and outputs a vector ��, where each element is the output of the sigmoid function

and represents how much we will update the corresponding element in ���� . Along with this, new

information that could be added to ����, denoted by �	�, is obtained by passing ℎ��� and �� through the

tanh activation function. Then, the new cell state �� is obtained by �� = ��° ���� + ��° �	�, where ° is the

Hadamard (or element-wise) product. Finally, the output gate determines how much of the new cell state

�� is output into the new hidden state ℎ�. The output gate receives ℎ��� and ��, and outputs a vector
�,
where each element is the output of the sigmoid function and represents how much we will output the

corresponding element in ��. Then, the new hidden state ℎ� is obtained by ℎ� =
�° tanh (��).

3. Proposed Method

In this section, we present the proposed extension for existing deep learning models, which

automatically finds the time lags between explanatory and response variables. The proposed method

consists of two steps: (1) identifying the time lags and (2) building a model reflecting the identified time

lags. We first define the problem and then describe the proposed method in detail.

3.1 Problem Definition

We assume that a training dataset has the form shown in Fig. 5. In Fig. 5, each row represents a data

instance, where ��,��, … ,�� are explanatory variables and � is the response variable. The symbol to the

left of each row (i.e., k – w + 1, …, k – 2, k – 1, k) indicates the sequence number of the corresponding

data instance. ��
(�) and �(�) represent the values of �� and � of the k-th data instance, respectively. Thus,

the k-th data instance can be expressed as (��
	�
,��

	�
, … ,��
	�
,�	�
). The problem of building a model

that represents the relationship between ��,��, … ,�� and � can be viewed as a problem of finding a

function f that satisfies � = �(��,��, … ,��).

However, most of the existing approaches to building a model � = �(��,��, … ,��) assume that �	�

is determined by ��
	�
,��

	�
, … ,��
	�
. In other words, they try to find f that minimizes the error between

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 351

�	�
 and �(��
	�
,��

	�
, … ,��
	�
). However, as mentioned in Section 1, some events in real life affect

other events with a certain time lag. For example, in Fig. 5, �	�
 may be determined by ��
	���
, ��

	���
,

…, ��
	�
, rather than ��

	�
, ��
	�
, …, ��

	�
. In this case, we say that there is a time lag of 2 between ��

and �, that there is a time lag of 1 between �� and �, and that there is no time lag between �� and �.

Fig. 5. The form of a training dataset.

Fig. 6. The proposed extension to an existing deep learning model.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

352 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

Given a training dataset in the form shown in Fig. 5 and a deep learning model ��, where � is the

parameters of f, this paper addresses the problem of finding the time lags between each of ��,��, … ,��

and �, and the optimal parameters �∗ of ��. In other words, our goal is to find the time lags ��, ��, … , ��

and the optimal model ��∗ that minimize the error between �	�
 and ��∗(��
	����
,��

	����
, … ,��
	����
),

where ��(� = 1, 2, … ,
) is the time lag between �� and �. Here, we assume that the time lag between

��(� = 1, 2, … ,
) and � are at most w, i.e., 0 ≤ �� ≤ w. As mentioned in Section 1, the proposed method

can be applied to any deep learning model that is based on artificial neural networks without additional

restrictions. Thus, �� can be any deep learning model, e.g., MLP [11], CNN [12], and LSTM [13].

3.2 Overview

Given a training dataset where ��,��, … ,�� are explanatory variables and � is the response variable,

and a deep learning model ��, the proposed method finds the time lag between �� and � for each ��, and

the optimal parameters �∗ of �� considering the found time lags between �� and �. For this purpose, we

extend the given deep learning model by adding an additional layer to find the time lags between �� and

�. Fig. 6 shows the proposed extension to an existing deep learning model. In Fig. 6, the upper part

corresponds to an existing deep learning model that represents the relationship between ��,��, … ,�� and

� without considering the time lags between them. Here, the nodes ��,��, … ,�� represents the

explanatory variables ��,��, … ,�� , respectively, and the topmost node � represents the response

variable �. Note that any deep learning model based on artificial neural networks can be at the upper part.

The lower part in Fig. 6 corresponds to the additional layer proposed in this paper to identify the time lag

between each explanatory variable �� and �. Each node �� in the upper part is connected to the nodes

��

(�)
, ��

(���)
, …, ��

(���
�)
 in the proposed layer. The nodes ��

(�)
, ��

(���)
, …, ��

(���
�)
 in the proposed

layer represent the most recent w values of the explanatory variable ��. The weight ���(� = 1, 2, … ,
, � =

1, 2, … ,�) between the node �� and the node ��

(���
�)
 indicates how much ��

(���
�)
 contributes to the

value of �� that minimizes the error of the model. All the weights ��� are learnable and determined

through training, and these weights will be used to identify the time lag between each �� and �. In the

next subsection, we present how to identify the time lag between each �� and � using the proposed layer.

3.3 Identifying Time Lags

In order to identify the time lag between each �� and �, we need to obtain all ���(� = 1, 2, … ,
, � =

1, 2, … ,�) through training. For this purpose, we train the whole model shown in Fig. 6 as follows. First,

we use the loss function used to train the original deep learning model (at the upper part in Fig. 6) without

modification. When training the whole model in Fig. 6, we use w consecutive rows in the training dataset

as one training data instance. Recall that w is the maximum time lag. For example, the first training data

instance is from the 1st row to the w-th row in the training dataset, the second training data instance is

from the 2nd row to the (w + 1)-th row, and so on. In other words, we slide a window of size w row by

row on the training dataset and use each as a training data instance. Let the current training instance be

from the (k – w + 1)-th row to the k-th row. At this time, each node ��

(���
�)
 in the proposed layer takes

��

(���
�)
 in the training dataset as input and outputs it as it. As mentioned in Section 3.2, we use a weight

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 353

��� between the node �� and the node ��

(���
�)
 to represent how much ��

(���
�)
 contributes to the value

of �� that minimizes the error of the model. For ��� to express this meaning, we modify the output of the

node ��, denoted by ��

������
, as follows:

��

������
= ����

�

���

��
	���
�
 (1)

Also, for ��� to represent its share in the total contribution, we impose the following constraints on ���
during training, as in [14]:

0 ≤ ��� ≤ 1 (2)

����
�

���

= 1 (3)

where � = 1, 2, … ,
 and � = 1, 2, … ,�. To make all ��� satisfy the constraints in Eq. (2) and Eq. (3)

during training, we update each ��� once more after ���, ���, … , ��� are updated at each epoch by the

optimizer. We use the following two techniques to make all ��� satisfy the constraints in Eqs. (2) and (3).

Normalization [15]: We use the following equation to normalize ���, ���, … , ��� to values in the range

of [0, 1] and make their sum 1.

��� =
���

∑ ����
���

 (4)

Softmax function [16]: We use the softmax function to make ���, ���, … ,��� be in the range of [0, 1]

and ensure that they add up to 1.

��� =
����

∑ �����
���

 (5)

Once the training of the whole model in Fig. 6 is completed using the method described so far, we

determine the time lag between each ��(� = 1, 2, … ,
) and � as follows: among the weights

���, ���, … , ��� between nodes �� and ��
	�
,��

	���
, … ,��
	���
�
 after training, let ��� be the largest

weight (1 ≤ � ≤ �). This means that ��
	���
�
 contributed the most to the value of �� that minimizes the

error of the model among ��
	�
,��

	���
, … ,��
	���
�
. In this case, we determine that the time lag between

�� and � is �, i.e., �� = �, because the error of the model is minimized when ��
	���
�
 is used rather than

the other values. We will present the performance of the proposed method when each of Eqs. (4) and (5)

is used in Section 4. In the next subsection, we present how to build the final model reflecting the

identified time lags.

3.4 Building a Model Reflecting Time Lags

Once we obtain the time lags ��, ��, … , �� between the explanatory variables ��,��, … ,�� and the

response variable �, we train the original deep learning model (at the upper part in Fig. 6) again alone to

obtain the final model that considers the time lags between ��,��, … ,�� and �. In order to build the final

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

354 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

deep learning model reflecting the identified time lags, we transform the original training dataset, where

each data instance has the form ���
��	, ��

��	, … , ��
��	, ���	�, into a new training dataset, where each data

instance has the form ���
��
��	, ��

��
��	, …, ��
��
��	, ���	�. In other words, we shift the values of each

explanatory variable �� downward by its time lag ��. For example, if the time lag between �� and � is 2

and the time lag between �� and � is 1, we shift the values of �� and �� downward by 2 and 1,

respectively, as shown in Fig. 7. In this way, ��
��
��	, ��

��
��	, … , ��
��
��	 are associated with ���	

instead of ��
��	, ��

��	, … , ��
��	. After obtaining the transformed training dataset, we also make the nodes

��, ��, … , �� in Fig. 6 output their input as it is instead of outputting ��

�
��
�
 (i.e., Eq. (1)). Finally, we

train the original deep learning model with the transformed training dataset. Note that in this case, we use

each row of the transformed training dataset as one training data instance.

Through the proposed method described in Section 3, we can easily obtain the time lags between

��, ��, … , �� and �, and the deep learning model reflecting them. Thus, we do not need to build wn

models for all possible combinations of time lags and find the model with the best performance among

them.

Fig. 7. An example of a transformed training dataset.

4. Experiments

4.1 Experimental Setting

In this section, we present the performance evaluation results of the proposed method. In order to show

that the proposed method improves the performance of existing deep learning models by considering the

time lags between explanatory and response variables, we use the following datasets:

1) Synthetic dataset: We assumed a model of the form � � � � ���� � ���� � ���� � ����, where

��, ��, �� and �� are explanatory variables, � is the response variable, ��, ��, ��, �� and � are

some fixed constants. We also assumed that there are a time lag of 2 between �� and �, a time lag

of 1 between �� and �, a time lag of 4 between �� and �, and a time lag of 3 between �� and �,

i.e., �� � 2, �� � 1, �� � 4, and �� � 3. Given the model and time lags, we randomly generated a

dataset that fits the model and time lags. This dataset intends to confirm that the proposed method

finds the model and time lags accurately.

2) Real dataset: We used demographic data provided by the Korean Statistical Information Service

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 355

(KOSIS) [17]. KOSIS is a database managed by Statistics Korea (KOSTAT), which contains 1,000

types of national approval statistics on the economy, society, and environment. From KOSIS, we

selected the marriage rate data from January 1997 to December 2020, employment rate data for

women from June 1999 to October 2021, and fertility rate data from January 1997 to December

2020, which are calculated for each month. For the employment rate data, we only used data for

women in their 20s and 30s because women’s childbearing age is from their mid-20s to mid-30s.

As a result, this dataset consists of two explanatory variables (i.e., marriage rate and employment

rate) and one response variable (i.e., fertility rate).

For both synthetic and real datasets, we split the dataset into two sets, which are training and test set.

We used 80% and 20% of the dataset as the training and test set, respectively. We trained each model

used in the experiments using the training set and measured the performance of each model using the test

set.

As mentioned earlier, the proposed method can be applied to any deep learning model that is based on

artificial neural networks. In the experiments, we used three deep learning models to show the

effectiveness of the proposed method.

1) MLP: We constructed an MPL with three layers: one input layer, one hidden layer, and one output

layer. The number of nodes in the input layer and hidden layer is the same as the number of ex-

planatory variables, the number of nodes in the output layer is 1. To train the MLP, we used the

mean squared error (MSE) as the loss function and the Adam optimizer with a learning rate of

0.01.

2) CNN: We also constructed a CNN with five layers: one input layer, one convolution layer, one

max pooling layer, one fully connected layer, and one output layer. The convolutional layer uses

a 1 × 1 filter with stride 1. We used ReLU as the activation function. To train the CNN, we used

MSE as the loss function and the Adam optimizer with a learning rate of 0.01.

3) LSTM: Finally, we constructed an LSTM with three layers: one input layer, one LSTM layer with

3 hidden states, and one output layer. We set the size of the input layer to the number of

explanatory variables. To train the LSTM, we used MSE as the loss function and the Adam

optimizer with a learning rate of 0.01

We compared the performance of the above original deep learning models with that of the models

optimized by the proposed method considering the time lags between explanatory and response variables.

We also investigated the performance of the proposed method when we use each of Eqs. (4) and (5)

described in Section 3.3. Finally, we evaluated the performance of the proposed method for varying

values of w, the maximum time lag, which is the only parameter of the proposed method. The proposed

method was implemented using PyTorch, and all the experiments were conducted on a PC running

Ubuntu with Intel Core i7-9700 CPU, TITAN V GPU, and 16 GB memory. In the next subsection, we

present how much the proposed method improves the performance of the three deep learning models

(i.e., MLP, CNN, and LSTM) by considering the time lags between explanatory and response variables.

4.2 Evaluation Results

4.2.1 Performance evaluation on synthetic dataset

In this section, we present performance evaluation results on the synthetic dataset. In this experiment,

we used the synthetic dataset described in Section 4.1. To measure the performance of a model, we used

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

356 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

MSE for the training dataset, which was averaged over 5 runs. Fig. 8 shows the experimental results on

the synthetic dataset. Here, "Baseline" represents the original deep learning model that does not consider

the time lags between explanatory and response variables. More specifically, given the k-th data instance

���
��	, ��

��	, … , ��
��	, ���	�, "Baseline" predicts ���	 using only ��

��	, ��
��	, … , ��

��	 and does not use

��
��
��	, ��

��
��	, … , ��
��
��	, where ���� � 1, 2, … , �� � 1. On the other hand, "w = n" represents the

model found by the proposed method when we set w to n. We varied w from 1 to 4. Fig. 8(a)–8(c) show

the effect of the proposed method when the proposed method is applied to MLP, CNN, and LSTM

described in Section 4.1, respectively. Finally, "with normalization" and "with softmax" represent the

models found by the proposed method using Eqs. (4) and (5), respectively.

(a) (b)

(c)

Fig. 8. Performance evaluation results on the synthetic dataset: (a) MLP, (b) CNN, and (c) LSTM.

In Fig. 8, we can see that the MSE of the models found by the proposed method are significantly

reduced compared to the original deep learning model (i.e., Baseline). This means that the proposed

method improves the performance of the given deep learning model by reflecting the time lags between

explanatory and response variables. Also, we can see that the performance improvement of the proposed

method increases as w increases. This is because the proposed method can find the best time lag for each

explanatory variable in a wider range. However, after some good time lags are found, we can see that the

performance improvement is not very large even if w further increases. Thus, we can confirm that the

proposed method can identify the time lags between explanatory and response variables effectively.

Note that the performance of the proposed method varies depending on whether Eq. (4) or Eq. (5) is

used (i.e., "with normalization" and "with softmax"). This is because Eqs. (4) and (5) have different ways

of normalizing ���, ���, … , ��� . More specifically, Eq. (4) assigns each ��� a value that is exactly

proportional to its current value, while Eq. (5) gives a much more value to ��� of any value larger.

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 357

Therefore, when the time lag is not certain, Eq. (5) can assign a large weight to a wrong ��� accidentally.

For this reason, the softmax function can sometimes lead to reduced performance improvement. For

example, in Fig. 8(c), the proposed method successfully found the optimal time lags (i.e., the loss is

nearly zero) when Eq. (4) was used, while the proposed method showed only a slight performance

improvement when Eq. (5) was used.

(a) (b)

(c)

Fig. 9. Performance evaluation results on the real dataset: (a) MLP, (b) CNN, and (c) LSTM.

4.2.2 Performance evaluation on real dataset

In this section, we present performance evaluation results on the real dataset described in Section 4.1.

We performed the experiment in exactly the same way as in Section 4.2.1, except that we varied w from

5 to 25 in steps of 5. Fig. 9(a)–9(c) show the effect of the proposed method when the proposed method

is applied to MLP, CNN, and LSTM described in Section 4.1, respectively.

Also in Fig. 9, we can see that the proposed method improves the performance of the given deep

learning models significantly. As in the case of the synthetic dataset, the performance improvement of

the proposed method increases in general as w increases. Recall that the real dataset has two explanatory

variables (i.e., the marriage rate and the employment rate of women) and one response variable (i.e., the

birth rate). Fig. 9 implies that the birth rate can be predicted more accurately using the marriage rate and

employment rate 25 months ago rather than the current month. Thus, the experimental results confirm

again that the performance of a model can be improved by considering the time lags between explanatory

and response variables. In the case of the real dataset, the use of Eq. (4) or Eq. (5) does not affect the

performance improvement of the proposed method significantly. If there are clear time lags between

explanatory and response variables, both equations yield similar results.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

358 | J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024

5. Conclusion

In this paper, we proposed a method to improve the performance of a given deep learning model by

automatically identifying the time lags between explanatory and response variables and reflecting them

in the model. For this purpose, the proposed method adds a new layer to the existing deep learning model

and uses this layer to find which values in the past minimize the error of the model. By using this new

layer, the proposed method can find the time lags between explanatory and response variables easily

without building models for all possible time lags.

We also evaluated the effect of the proposed method by applying the proposed method to three popular

deep learning models (i.e., MLP, CNN, and LSTM) on synthetic and real datasets. The experimental

results show that the proposed method actually improves the performance of a given deep learning model

by reflecting the time lags between explanatory and response variables. For the real dataset, the proposed

method reduced the error of the existing model by up to 60%. Therefore, we can conclude that the

proposed method can improve the performance of existing deep learning models when there are time lags

between explanatory and response variables.

Conflict of Interest

The authors declare that they have no competing interests.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (No. NRF-2021R1A2C1012543).

References

[1] C. Kim, E. Ryoo, and K. Y. Lee, “Deep learning model for identifying the time lag between explanatory

variables and response variable in regression analysis,” in Proceedings of Annual Conference of the Korea

Information Processing Society, Yeosu, Korea, 2021, pp. 868-871. https://doi.org/10.3745/PKIPS.y2021m1

1a.868

[2] J. Wu, “Prediction of birth rate in China under three-child policy based on neural network,” in Proceedings

of 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China,

2022, pp. 1652-1655. https://doi.org/10.1109/ICSP54964.2022.9778548

[3] K. Kim and S. Jeon, “Scenario analysis of fertility in Korea using the fertility rate prediction model,” The

Korean Journal of Applied Statistics, vol. 28, no. 4, pp. 685-701, 2015. https://doi.org/10.5351/KJAS.2015.2

8.4.685

[4] T. Hayduk and M. Walker, “The effect of advertising on sales and brand equity in small sport businesses,”

Sport Marketing Quarterly, vol. 30, no. 3, pp. 178-192, 2021. http://doi.org/10.32731/SMQ.303.0921.02

[5] Q. Sun, C. Liu, T. Chen, and A. Zhang, “A weighted-time-lag method to detect lag vegetation response to

climate variation: a case study in Loess Plateau, China, 1982–2013,” Remote Sensing, vol. 13, no. 5, article

no. 923, 2021. https://doi.org/10.3390/rs13050923

https://doi.org/10.3745/PKIPS.y2021m11a.868
https://doi.org/10.3745/PKIPS.y2021m11a.868
https://doi.org/10.5351/KJAS.2015.28.4.685
https://doi.org/10.5351/KJAS.2015.28.4.685

Chaehyeon Kim and Ki Yong Lee

J Inf Process Syst, Vol.20, No.3, pp.345~359, June 2024 | 359

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,

“Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Boston, MA, USA, 2015, pp. 1-9.

[7] H. Gu, Y. Wang, S. Hong, and G. Gui, “Blind channel identification aided generalized automatic modulation

recognition based on deep learning,” IEEE Access, vol. 7, pp. 110722-110729, 2019. https://doi.org/10.1109/

ACCESS.2019.2934354

[8] M. Aamir, Z. Rahman, W. A. Abro, M. Tahir, and S. M. Ahmed, “An optimized architecture of image

classification using convolutional neural network,” International Journal of Image, Graphics and Signal

Processing, vol. 11, no. 10, pp. 30-39, 2019. https://doi.org/10.5815/ijigsp.2019.10.05

[9] S. Miao, Z. J. Wang, and R. Liao, “A CNN regression approach for real-time 2D/3D registration,” IEEE

Transactions on Medical Imaging, vol. 35, no. 5, pp. 1352-1363, 2016. https://doi.org/10.1109/TMI.2016.25

21800

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735-

1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735

[11] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, et al., “MLP-mixer: an all-

MLP architecture for vision,” Advances in Neural Information Processing Systems, vol. 34, pp. 24261-24272,

2021.

[12] H. Han, “Residual learning based CNN for gesture recognition in robot interaction,” Journal of Information

Processing Systems, vol. 17, no. 2, pp. 385-398, 2021. https://doi.org/10.3745/JIPS.01.0072

[13] J. Kim, J. Park, M. Shin, J. Lee, and N. Moon, “The method for generating recommended candidates through

prediction of multi-criteria ratings using CNN-BiLSTM,” Journal of Information Processing Systems, vol.

17, no. 4, pp. 707-720, 2021. https://doi.org/10.3745/JIPS.02.0159

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks: training deep

neural networks with weights and activations constrained to+ 1 or -1,” 2016 [Online]. Available: https://arxi

v.org/abs/1602.02830

[15] J. Han and M. Kamber, Data Mining: Concepts and Techniques. San Francisco, CA: Morgan Kaufmann,

2001.

[16] S. Gold and A. Rangarajan, “Softmax to softassign: neural network algorithms for combinatorial optimiza-

tion,” Journal of Artificial Neural Networks, vol. 2, no. 4, pp. 381-399, 1996.

[17] Statistics Korea, “KOSIS (Korean Statistical Information Service),” c2024 [Online]. Available: http://kosis.kr

Chaehyeon Kim https://orcid.org/0000-0002-6443-1286
She received her B.S. in both Statistics and Computer Science from Sookmyung

Women's University, Seoul, Republic of Korea, in 2021. She also received her M.S.

degree in Computer Science from Sookmyung Women's University, Seoul, Korea, in

2023. She is currently a PhD student in Computer and Information Science at the

University of Pennsylvania. Her current research interests include databases, data

mining, and deep learning.

Ki Yong Lee https://orcid.org/0000-0003-2318-671X
He received his B.S., M.S., and Ph.D. degrees in Computer Science from KAIST,

Daejeon, Republic of Korea, in 1998, 2000, and 2006, respectively. From 2006 to

2008, he worked for Samsung Electronics, Suwon, Korea as a senior engineer. From

2008 to 2010, he was a research assistant professor of the Department of Computer

Science at KAIST, Daejeon, Korea. He joined the faculty of the Division of Computer

Science at Sookmyung Women's University, Seoul, in 2010, where currently he is a

professor. His research interests include database systems, data mining, and big data.

https://doi.org/10.1109/ACCESS.2019.2934354
https://doi.org/10.1109/ACCESS.2019.2934354
https://doi.org/10.1109/TMI.2016.2521800
https://doi.org/10.1109/TMI.2016.2521800

