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Abstract 

A regression model represents the relationship between explanatory and response variables. In real life, 

explanatory variables often affect a response variable with a certain time lag, rather than immediately. For 

example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models 

have been successfully used to model various relationships, most of them do not consider the time lags between 

explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models, 

which automatically finds the time lags between explanatory and response variables. The proposed method 

finds out which of the past values of the explanatory variables minimize the error of the model, and uses the 

found values to determine the time lag between each explanatory variable and response variables. After deter-

mining the time lags between explanatory and response variables, the proposed method trains the deep learning 

model again by reflecting these time lags. Through various experiments applying the proposed method to a few 

deep learning models, we confirm that the proposed method can find a more accurate model whose error is 

reduced by more than 60% compared to the original model. 

 

Keywords 

Deep Learning, Model Optimization, Regression Model, Time Lag 
 

 

 

1. Introduction 

In real life, some events affect other events with a certain time lag, rather than immediately. For 

example, temperature, cloud cover, and humidity affect precipitation after a certain period. Advertising 

expenditure also affects sales volume with a certain time lag. Similarly, the marriage rate affects the birth 

rate after a certain period of time. We call the time difference in which one event affects another event 

the time lag. Therefore, when we analyze the relationships between events, it is very important to consider 

the time lags between those events, if present. 

Recently, with the advent of deep learning techniques, many phenomena in social sciences, economics, 

climate, natural science, etc. have been successfully modeled using deep learning models that are based 

on artificial neural networks—e.g., multilayer perceptron (MLP), convolutional neural network (CNN), 

and long short-term memory (LSTM). These deep learning models represent the complex relationships 

between explanatory variables (i.e., independent or input variables) and response variables (i.e., 
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dependent or output variables). However, most of those models assume that explanatory variables affect 

the response variable immediately and do not consider the time lags between explanatory and response 

variables. For example, Fig. 1(a) shows an example of a training dataset used to train a deep learning 

model, where ��, ��, … , �� are explanatory variables and � is the response variable. As described in Fig. 

1(a), most of existing deep learning models assume that the current value of � is affected by the current 

values of  ��, ��, … , ��. However, as shown in Fig. 1(c) and 1(d), an explanatory variable may affect the 

response variable with a certain time lag. For example, Fig. 1(c) indicates that the international oil prices 

affect the system marginal prices (SMP) with a time lag of about half a year. Similarly, Fig. 1(d) implies 

that the number of marriages affects the number of births with a time lag of about a year. In these cases, 

it would be more desirable to consider the time lags between explanatory and response variables to build 

a more accurate model. For example, Fig. 1(b) depicts that the values of �� and �� affect the value of � 

after 2 observations and 1 observation, respectively. However, most existing deep learning models do not 

automatically detect such time lags between explanatory and response variables, which degrades the 

model performance. Although we have proposed the initial idea of identifying the time lags between 

explanatory and response variables in [1], [1] considers only simple linear regression models. 

 

 
(a) (b)

 
(c) (d)

Fig. 1. Examples of time lags between explanatory and response variables: (a) An example of a training 

dataset, (b) The time lags between X_1, X_2, ...., X_n and Y, (c) The time lags between the oil price and 

SMP, and (d) The time lags between the number of marriages and the number of births. 

 

Therefore, in this paper, we propose an extension of existing deep learning models, which 

automatically finds the time lags between explanatory variables ��, ��, … , �� and the response variable 

�. The proposed method then reflects the found time lags to build a more accurate deep learning model. 

For each explanatory variable ���� � 1,2, … , ��, the proposed method finds out which of the past w 

values of �� minimizes the error between the model and the current value of �, and uses the found values 

to determine the time lag between �� and �. After determining the time lags between ��, ��, … , �� and 

� in this way, the proposed method trains the deep learning model again by reflecting these time lags to 

build a more accurate model. As one of the most important advantages, the proposed method can be 

applied to any deep learning model based on artificial neural networks in general without additional 
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restrictions. Through various experiments applying the proposed method to popular and representative 

deep learning models including MLP, CNN, and LSTM on synthetic and real datasets, we show that the 

proposed method can find a more accurate model whose error is reduced by more than 60% compared to 

a model that does not consider the time lags between explanatory and response variables. Our 

contributions are summarized as follows: 

 For the first time, we propose a method to improve the performance of a given deep learning model 

by considering the time lags between explanatory and response variables. 

 We propose a new layer that can be added to an existing deep learning model that automatically 

identifies the time lags between explanatory and response variables 

 We show the performance improvement of the proposed method by applying the proposed method 

to popular deep learning models on synthetic and real datasets. 

The rest of the paper is organized as follows. In Section 2, we present related work on time lags and 

briefly describe three popular and representative deep learning models used in the experiments. Section 

3 describes the proposed method for automatically identifying the time lags between explanatory and 

response variables. Section 4 presents experimental results on synthetic and real datasets to show the 

effectiveness of the proposed method. Finally, Section 5 concludes the paper. 

 

 

2. Related Work 

2.1 Considering the Time Lags between Explanatory and Response Variables 

The term "time lag" refers to the time interval between two related events occurring, such as the time 

interval between marriage and childbirth and the time interval between cloud formation and rainfall. As 

mentioned in Section 1, the marriage rate affects the birth rate a few years later. In this case, if we build 

a model that predicts the birth rate from the marriage rate without considering the time lag between them, 

we will end up with a model with low accuracy. However, there has been little research on building a 

model by automatically identifying the time lags between explanatory variables ��,��, … ,�� and the 

response variable �, and even recent studies proceed without considering time lags [2]. Previous studies 

considering the time lags between explanatory and response variables are largely classified into the 

following three categories: 

1) Set the time lags between explanatory and response variables arbitrarily through prior knowledge: 

For example, [3] builds a birth rate prediction model that predicts this year’s birth rate from some 

statistics from a few years ago (e.g., 1 or 2 years ago). These types of methods do not automatically 

identify the time lags between explanatory and response variables, but set the time lags manually. 

However, setting the time lags arbitrarily does not guarantee the model with optimal performance. 

2) Build a model for each possible time lag and then select the model with the best performance: For 

example, [4] builds a linear regression model by including a variable representing the time lag 

between explanatory variables and the response variable. However, [4] needs to set the value of 

that variable for each possible time lag, which makes it difficult to apply in practice. More 

specifically, if we have n explanatory variables ��,��, … ,�� and the number of possible time lags 

for each explanatory variable is w, then we need to build a total of wn models and then find the 

best model among them. Furthermore, this method is only applicable to linear regression models.  
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3) Assign different weights to several time lags and find the best combination of weights that gives 

the highest performance: For example, [5] constructs candidate combinations of weights for 

several time lags (e.g., 1 month, 2 months, …, T months) and selects the best combination of 

weights based on the square of correlation coefficient R2 of the linear regression model. However, 

[5] needs to construct a lot of candidate combinations of weights and measure R2 for each 

combination. More specifically, if we assign weights P1, P2, …, PT for T time lags (e.g., 1 month, 

2 months, …, T months), where P1 + P2 + … + PT = 1, there can be a prohibitively large number 

of candidate combinations of weights (e.g., P1 = 0.1, P2 = 0.2, …, PT = 0.5). Furthermore, this 

method only considers linear regression models and does not consider deep learning models. 
 

Therefore, to date, there is no special way to systematically identify the time lags between explanatory 

and response variables, especially for deep learning models. This motivates our work. 

 

2.2 Deep Learning Models 

This section briefly describes three popular and representative deep learning models (i.e., MLP, CNN, 

and LSTM) considered in this paper. 

 

2.2.1 MLP 

A MLP is the simplest form of a deep learning model, which consists of a number of layers. These are 

an input layer, several hidden layers, and an output layer. Fig. 2 shows the architecture of an MLP. Each 

layer also consists of a number of nodes (or neurons) and each node in one layer connects to every node 

in the following layer with some weights. Each node in the input layer corresponds to an explanatory 

variable ���� � 1, 2, … , ��. Each node in a hidden layer transforms the values from the previous layer 

with a weighted sum followed by an activation function, which can be represented as 
 � ������ �

���� � ⋯ � ���� �  ��, where � is the number of nodes in the previous layer, ��, ��, … , �� represent 

the values from the previous layer, ��, ��, … , �� represent the weights between the nodes in the previous 

layer and this node, � represents the bias of this node, � represents the activation function (e.g., linear 

activation, ReLU, sigmoid, hyperbolic tangent), and 
 represents the output value of this node. The 

output layer receives the output values from the last hidden layer and transforms them into a final output 

value, which corresponds to the response variable �. 
 

 
Fig. 2. The architecture of MLP. 

 

Given a training dataset where each instance has the form ���, ��, … , ��, 
�, where ��, ��, … , �� are the 

values of the explanatory variables ��, ��, … , �� and 
 is the value of the response variable �, an MLP 
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is trained to find the optimal parameters (the weight between nodes and the bias of each node) that 

minimize the error between � and the output of the MLP for the input values ��, ��, … , ��. The MLP is 

simple but widely used because of its ability to approximate complex functions between explanatory and 

response variables. 

 

2.2.2 CNN 

A CNN [6] is a type of deep learning model originally proposed to process image data. Since the 

original MLP basically processes one-dimensional data, when image data are used as input, the image 

data should be flattened and made into one-dimensional data. In this process, the spatial and topological 

information of the image is lost. A CNN takes 2- or 3-dimensional data as raw input and builds up layers 

of features while maintaining the spatial and topological information of the input data. Consequently, a 

CNN is typically used to identify spatial-invariant patterns. 

As shown in Fig. 3, a CNN is composed of multiple layers of convolution layers and pooling layers 

[7]. In the first convolution layer of the CNN in Fig. 3, several feature maps are obtained using multiple 

filters (or kernels), each of which detects some specific type of feature over the input data. Next, the first 

pooling layer reduces the dimensionality of each feature map. The two common pooling methods are 

max and average pooling. The second convolution layer again obtain a number of feature maps from the 

output of the first pooling layer using multiple filters. The second pooling layer then again reduces the 

size of each feature map generated by the second convolution layer. Next, the output of the second 

pooling layer is flattened into one-dimensional data, and finally, one or more fully connected layers are 

applied with some activation function. 

Although CNNs are widely used for classification problems [8], they can also be used for regression 

problems [9]. For a classification problem, a softmax layer is typically used as the output layer of a CNN 

to output the predicted probability of each class. On the other hand, for a regression problem, a fully-

connected layer can be used as the output layer of a CNN, where each node outputs an arbitrary 

continuous value. In this case, the CNN extracts features from the input data using convolution layers 

and pooling layers and then outputs continuous values to predict continuous response variables. 

 

 

Fig. 3. The architecture of CNN. Adapted from [7]. 
 

 

Fig. 4. The architecture of LSTM. 
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2.2.3 LSTM 

LSTM [10] is one of the recurrent neural network (RNN) models where the output of nodes can be fed 

back to the same nodes. The LSTM is a widely used deep learning model because it can solve the long-

term dependency problem of the traditional RNN. LSTM is mainly used to process sequence data such 

as time series, natural language text, and speech. Fig. 4 shows the architecture of LSTM. Unlike the 

traditional RNN, each unit of LSTM is composed of an input gate, a forget gate, and an output gate. The 

LSTM solves the long-term dependency problem by adding a cell state to each unit in the network. The 

cell state �� stores long-term information from the previous time steps. The LSTM uses the three gates 

to remove or add information to ��. The forget gate determines which information from the previous cell 

state ���� is forgotten. The forget gate receives the previous hidden state ℎ��� and the current input �� of 

the unit, and outputs a vector ��, where each element is the output of the sigmoid function and has a value 

between 0 and 1. If the value of an element is 0, all the information of the corresponding element in 

���� is completely forgotten. If it is 1, all the information of the corresponding element in ����  is 

remembered. Next, the input gate determines how much of the current input will be used. The input gate 

receives ℎ��� and ��, and outputs a vector ��, where each element is the output of the sigmoid function 

and represents how much we will update the corresponding element in ���� . Along with this, new 

information that could be added to ����, denoted by �	�, is obtained by passing ℎ��� and �� through the 

tanh activation function. Then, the new cell state �� is obtained by �� =  ��° ���� + ��° �	�, where ° is the 

Hadamard (or element-wise) product. Finally, the output gate determines how much of the new cell state 

�� is output into the new hidden state ℎ�. The output gate receives ℎ��� and ��, and outputs a vector 
�, 
where each element is the output of the sigmoid function and represents how much we will output the 

corresponding element in ��. Then, the new hidden state ℎ� is obtained by ℎ� =  
�° tanh (��). 

 

 

3. Proposed Method 

In this section, we present the proposed extension for existing deep learning models, which 

automatically finds the time lags between explanatory and response variables. The proposed method 

consists of two steps: (1) identifying the time lags and (2) building a model reflecting the identified time 

lags. We first define the problem and then describe the proposed method in detail. 

 

3.1 Problem Definition 

We assume that a training dataset has the form shown in Fig. 5. In Fig. 5, each row represents a data 

instance, where ��,��, … ,�� are explanatory variables and � is the response variable. The symbol to the 

left of each row (i.e., k – w + 1, …, k – 2, k – 1, k) indicates the sequence number of the corresponding 

data instance. ��
(�) and �(�) represent the values of �� and � of the k-th data instance, respectively. Thus, 

the k-th data instance can be expressed as (��
	�
,��

	�
, … ,��
	�
,�	�
). The problem of building a model 

that represents the relationship between ��,��, … ,�� and � can be viewed as a problem of finding a 

function f that satisfies � = �(��,��, … ,��). 

However, most of the existing approaches to building a model � = �(��,��, … ,��) assume that �	�
 

is determined by ��
	�
,��

	�
, … ,��
	�
. In other words, they try to find f that minimizes the error between 
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�	�
 and �(��
	�
,��

	�
, … ,��
	�
). However, as mentioned in Section 1, some events in real life affect 

other events with a certain time lag. For example, in Fig. 5, �	�
 may be determined by ��
	���
, ��

	���
, 

…, ��
	�
, rather than ��

	�
, ��
	�
, …, ��

	�
. In this case, we say that there is a time lag of 2 between �� 

and �, that there is a time lag of 1 between �� and �, and that there is no time lag between �� and �. 

 

 

Fig. 5. The form of a training dataset. 

 

 

Fig. 6. The proposed extension to an existing deep learning model. 
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Given a training dataset in the form shown in Fig. 5 and a deep learning model ��, where � is the 

parameters of f, this paper addresses the problem of finding the time lags between each of ��,��, … ,�� 

and �, and the optimal parameters �∗ of ��. In other words, our goal is to find the time lags ��, ��, … , �� 

and the optimal model ��∗ that minimize the error between �	�
 and ��∗(��
	����
,��

	����
, … ,��
	����
), 

where ��(� = 1, 2, … ,
) is the time lag between �� and �. Here, we assume that the time lag between 

��(� = 1, 2, … ,
) and � are at most w, i.e., 0 ≤ �� ≤ w. As mentioned in Section 1, the proposed method 

can be applied to any deep learning model that is based on artificial neural networks without additional 

restrictions. Thus, �� can be any deep learning model, e.g., MLP [11], CNN [12], and LSTM [13]. 

 

3.2 Overview 

Given a training dataset where ��,��, … ,�� are explanatory variables and � is the response variable, 

and a deep learning model ��, the proposed method finds the time lag between �� and � for each ��, and 

the optimal parameters �∗ of �� considering the found time lags between �� and �. For this purpose, we 

extend the given deep learning model by adding an additional layer to find the time lags between �� and 

�. Fig. 6 shows the proposed extension to an existing deep learning model. In Fig. 6, the upper part 

corresponds to an existing deep learning model that represents the relationship between ��,��, … ,�� and 

�  without considering the time lags between them. Here, the nodes ��,��, … ,��  represents the 

explanatory variables ��,��, … ,�� , respectively, and the topmost node �  represents the response 

variable �. Note that any deep learning model based on artificial neural networks can be at the upper part. 

The lower part in Fig. 6 corresponds to the additional layer proposed in this paper to identify the time lag 

between each explanatory variable �� and �. Each node �� in the upper part is connected to the nodes 

��

(�)
, ��

(���)
, …,  ��

(���
�)
 in the proposed layer. The nodes ��

(�)
, ��

(���)
, …,  ��

(���
�)
 in the proposed 

layer represent the most recent w values of the explanatory variable ��. The weight ���(� = 1, 2, … ,
, � =

1, 2, … ,�) between the node �� and the node ��

(���
�)
 indicates how much ��

(���
�)
 contributes to the 

value of ��  that minimizes the error of the model. All the weights ���  are learnable and determined 

through training, and these weights will be used to identify the time lag between each �� and �. In the 

next subsection, we present how to identify the time lag between each �� and � using the proposed layer. 

 

3.3 Identifying Time Lags 

In order to identify the time lag between each �� and �, we need to obtain all ���(� = 1, 2, … ,
, � =

1, 2, … ,�) through training. For this purpose, we train the whole model shown in Fig. 6 as follows. First, 

we use the loss function used to train the original deep learning model (at the upper part in Fig. 6) without 

modification. When training the whole model in Fig. 6, we use w consecutive rows in the training dataset 

as one training data instance. Recall that w is the maximum time lag. For example, the first training data 

instance is from the 1st row to the w-th row in the training dataset, the second training data instance is 

from the 2nd row to the (w + 1)-th row, and so on. In other words, we slide a window of size w row by 

row on the training dataset and use each as a training data instance. Let the current training instance be 

from the (k – w + 1)-th row to the k-th row. At this time, each node ��

(���
�)
 in the proposed layer takes 

��

(���
�)
 in the training dataset as input and outputs it as it. As mentioned in Section 3.2, we use a weight 
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��� between the node �� and the node ��

(���
�)
 to represent how much ��

(���
�)
 contributes to the value 

of �� that minimizes the error of the model. For ��� to express this meaning, we modify the output of the 

node ��, denoted by ��

������
, as follows: 

 

��

������
=  ����

�

���

��
	���
�
 (1) 

 

Also, for ��� to represent its share in the total contribution, we impose the following constraints on ��� 
during training, as in [14]: 

 

0 ≤ ��� ≤ 1 (2) 
 

����
�

���

= 1 (3) 

 

where � = 1, 2, … ,
 and � = 1, 2, … ,�. To make all ���  satisfy the constraints in Eq. (2) and Eq. (3) 

during training, we update each ���  once more after ���, ���, … , ���  are updated at each epoch by the 

optimizer. We use the following two techniques to make all ��� satisfy the constraints in Eqs. (2) and (3). 

Normalization [15]: We use the following equation to normalize ���, ���, … , ��� to values in the range 

of [0, 1] and make their sum 1. 
 

��� =
���

∑ ����
���

 (4) 

 

Softmax function [16]: We use the softmax function to make ���, ���, … ,��� be in the range of [0, 1] 

and ensure that they add up to 1. 
 

��� =
����

∑ �����
���

 (5) 

 

Once the training of the whole model in Fig. 6 is completed using the method described so far, we 

determine the time lag between each ��(� = 1, 2, … ,
)  and �  as follows: among the weights 

���, ���, … , ���  between nodes ��  and ��
	�
,��

	���
, … ,��
	���
�
  after training, let ���  be the largest 

weight (1 ≤ � ≤ �). This means that ��
	���
�
 contributed the most to the value of �� that minimizes the 

error of the model among ��
	�
,��

	���
, … ,��
	���
�
. In this case, we determine that the time lag between 

�� and � is �, i.e., �� = �, because the error of the model is minimized when ��
	���
�
 is used rather than 

the other values. We will present the performance of the proposed method when each of Eqs. (4) and (5) 

is used in Section 4. In the next subsection, we present how to build the final model reflecting the 

identified time lags. 

 

3.4 Building a Model Reflecting Time Lags 

Once we obtain the time lags ��, ��, … , ��  between the explanatory variables ��,��, … ,��  and the 

response variable �, we train the original deep learning model (at the upper part in Fig. 6) again alone to 

obtain the final model that considers the time lags between ��,��, … ,�� and �. In order to build the final 
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deep learning model reflecting the identified time lags, we transform the original training dataset, where 

each data instance has the form ���
��	, ��

��	, … , ��
��	, ���	�, into a new training dataset, where each data 

instance has the form ���
��
��	, ��

��
��	, …, ��
��
��	, ���	�. In other words, we shift the values of each 

explanatory variable �� downward by its time lag ��. For example, if the time lag between �� and � is 2 

and the time lag between �� and �  is 1, we shift the values of �� and �� downward by 2 and 1, 

respectively, as shown in Fig. 7. In this way, ��
��
��	, ��

��
��	, … , ��
��
��	 are associated with ���	 

instead of ��
��	, ��

��	, … , ��
��	. After obtaining the transformed training dataset, we also make the nodes 

��, ��, … , �� in Fig. 6 output their input as it is instead of outputting ��

�
��
�
 (i.e., Eq. (1)). Finally, we 

train the original deep learning model with the transformed training dataset. Note that in this case, we use 

each row of the transformed training dataset as one training data instance. 

Through the proposed method described in Section 3, we can easily obtain the time lags between 

��, ��, … , ��  and �, and the deep learning model reflecting them. Thus, we do not need to build wn 

models for all possible combinations of time lags and find the model with the best performance among 

them. 

 

 
Fig. 7. An example of a transformed training dataset. 

 

 

4. Experiments 

4.1 Experimental Setting 

In this section, we present the performance evaluation results of the proposed method. In order to show 

that the proposed method improves the performance of existing deep learning models by considering the 

time lags between explanatory and response variables, we use the following datasets: 

1) Synthetic dataset: We assumed a model of the form � � � � ���� � ���� � ���� �  ����, where 

��, ��, ��  and ��  are explanatory variables, �  is the response variable, ��, ��, ��, ��  and �  are 

some fixed constants. We also assumed that there are a time lag of 2 between �� and �, a time lag 

of 1 between �� and �, a time lag of 4 between �� and �, and a time lag of 3 between �� and �, 

i.e., �� � 2, �� � 1, �� � 4, and �� � 3. Given the model and time lags, we randomly generated a 

dataset that fits the model and time lags. This dataset intends to confirm that the proposed method 

finds the model and time lags accurately. 

2) Real dataset: We used demographic data provided by the Korean Statistical Information Service 
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(KOSIS) [17]. KOSIS is a database managed by Statistics Korea (KOSTAT), which contains 1,000 

types of national approval statistics on the economy, society, and environment. From KOSIS, we 

selected the marriage rate data from January 1997 to December 2020, employment rate data for 

women from June 1999 to October 2021, and fertility rate data from January 1997 to December 

2020, which are calculated for each month. For the employment rate data, we only used data for 

women in their 20s and 30s because women’s childbearing age is from their mid-20s to mid-30s. 

As a result, this dataset consists of two explanatory variables (i.e., marriage rate and employment 

rate) and one response variable (i.e., fertility rate). 

For both synthetic and real datasets, we split the dataset into two sets, which are training and test set. 

We used 80% and 20% of the dataset as the training and test set, respectively. We trained each model 

used in the experiments using the training set and measured the performance of each model using the test 

set. 

As mentioned earlier, the proposed method can be applied to any deep learning model that is based on 

artificial neural networks. In the experiments, we used three deep learning models to show the 

effectiveness of the proposed method. 

1) MLP: We constructed an MPL with three layers: one input layer, one hidden layer, and one output 

layer. The number of nodes in the input layer and hidden layer is the same as the number of ex-

planatory variables, the number of nodes in the output layer is 1. To train the MLP, we used the 

mean squared error (MSE) as the loss function and the Adam optimizer with a learning rate of 

0.01. 

2) CNN: We also constructed a CNN with five layers: one input layer, one convolution layer, one 

max pooling layer, one fully connected layer, and one output layer. The convolutional layer uses 

a 1 × 1 filter with stride 1. We used ReLU as the activation function. To train the CNN, we used 

MSE as the loss function and the Adam optimizer with a learning rate of 0.01. 

3) LSTM: Finally, we constructed an LSTM with three layers: one input layer, one LSTM layer with 

3 hidden states, and one output layer. We set the size of the input layer to the number of 

explanatory variables. To train the LSTM, we used MSE as the loss function and the Adam 

optimizer with a learning rate of 0.01 

We compared the performance of the above original deep learning models with that of the models 

optimized by the proposed method considering the time lags between explanatory and response variables. 

We also investigated the performance of the proposed method when we use each of Eqs. (4) and (5) 

described in Section 3.3. Finally, we evaluated the performance of the proposed method for varying 

values of w, the maximum time lag, which is the only parameter of the proposed method. The proposed 

method was implemented using PyTorch, and all the experiments were conducted on a PC running 

Ubuntu with Intel Core i7-9700 CPU, TITAN V GPU, and 16 GB memory. In the next subsection, we 

present how much the proposed method improves the performance of the three deep learning models 

(i.e., MLP, CNN, and LSTM) by considering the time lags between explanatory and response variables. 

 

4.2 Evaluation Results 

4.2.1 Performance evaluation on synthetic dataset 

In this section, we present performance evaluation results on the synthetic dataset. In this experiment, 

we used the synthetic dataset described in Section 4.1. To measure the performance of a model, we used 
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MSE for the training dataset, which was averaged over 5 runs. Fig. 8 shows the experimental results on 

the synthetic dataset. Here, "Baseline" represents the original deep learning model that does not consider 

the time lags between explanatory and response variables. More specifically, given the k-th data instance 

���
��	, ��

��	, … , ��
��	, ���	�, "Baseline" predicts ���	 using only ��

��	, ��
��	, … , ��

��	 and does not use 

��
��
��	, ��

��
��	, … , ��
��
��	, where ���� � 1, 2, … , �� � 1. On the other hand, "w = n" represents the 

model found by the proposed method when we set w to n. We varied w from 1 to 4. Fig. 8(a)–8(c) show 

the effect of the proposed method when the proposed method is applied to MLP, CNN, and LSTM 

described in Section 4.1, respectively. Finally, "with normalization" and "with softmax" represent the 

models found by the proposed method using Eqs. (4) and (5), respectively. 

 

 
(a) (b)

 
(c)  

Fig. 8. Performance evaluation results on the synthetic dataset: (a) MLP, (b) CNN, and (c) LSTM. 

 

In Fig. 8, we can see that the MSE of the models found by the proposed method are significantly 

reduced compared to the original deep learning model (i.e., Baseline). This means that the proposed 

method improves the performance of the given deep learning model by reflecting the time lags between 

explanatory and response variables. Also, we can see that the performance improvement of the proposed 

method increases as w increases. This is because the proposed method can find the best time lag for each 

explanatory variable in a wider range. However, after some good time lags are found, we can see that the 

performance improvement is not very large even if w further increases. Thus, we can confirm that the 

proposed method can identify the time lags between explanatory and response variables effectively. 

Note that the performance of the proposed method varies depending on whether Eq. (4) or Eq. (5) is 

used (i.e., "with normalization" and "with softmax"). This is because Eqs. (4) and (5) have different ways 

of normalizing ���, ���, … , ��� . More specifically, Eq. (4) assigns each ���  a value that is exactly 

proportional to its current value, while Eq. (5) gives a much more value to ���  of any value larger. 
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Therefore, when the time lag is not certain, Eq. (5) can assign a large weight to a wrong ��� accidentally. 

For this reason, the softmax function can sometimes lead to reduced performance improvement. For 

example, in Fig. 8(c), the proposed method successfully found the optimal time lags (i.e., the loss is 

nearly zero) when Eq. (4) was used, while the proposed method showed only a slight performance 

improvement when Eq. (5) was used. 

 

 
(a) (b) 

 
(c)  

Fig. 9. Performance evaluation results on the real dataset: (a) MLP, (b) CNN, and (c) LSTM. 

 

4.2.2 Performance evaluation on real dataset 

In this section, we present performance evaluation results on the real dataset described in Section 4.1. 

We performed the experiment in exactly the same way as in Section 4.2.1, except that we varied w from 

5 to 25 in steps of 5. Fig. 9(a)–9(c) show the effect of the proposed method when the proposed method 

is applied to MLP, CNN, and LSTM described in Section 4.1, respectively. 

Also in Fig. 9, we can see that the proposed method improves the performance of the given deep 

learning models significantly. As in the case of the synthetic dataset, the performance improvement of 

the proposed method increases in general as w increases. Recall that the real dataset has two explanatory 

variables (i.e., the marriage rate and the employment rate of women) and one response variable (i.e., the 

birth rate). Fig. 9 implies that the birth rate can be predicted more accurately using the marriage rate and 

employment rate 25 months ago rather than the current month. Thus, the experimental results confirm 

again that the performance of a model can be improved by considering the time lags between explanatory 

and response variables. In the case of the real dataset, the use of Eq. (4) or Eq. (5) does not affect the 

performance improvement of the proposed method significantly. If there are clear time lags between 

explanatory and response variables, both equations yield similar results. 
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5. Conclusion 

In this paper, we proposed a method to improve the performance of a given deep learning model by 

automatically identifying the time lags between explanatory and response variables and reflecting them 

in the model. For this purpose, the proposed method adds a new layer to the existing deep learning model 

and uses this layer to find which values in the past minimize the error of the model. By using this new 

layer, the proposed method can find the time lags between explanatory and response variables easily 

without building models for all possible time lags. 

We also evaluated the effect of the proposed method by applying the proposed method to three popular 

deep learning models (i.e., MLP, CNN, and LSTM) on synthetic and real datasets. The experimental 

results show that the proposed method actually improves the performance of a given deep learning model 

by reflecting the time lags between explanatory and response variables. For the real dataset, the proposed 

method reduced the error of the existing model by up to 60%. Therefore, we can conclude that the 

proposed method can improve the performance of existing deep learning models when there are time lags 

between explanatory and response variables. 
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