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Abstract
Linear regression is the most basic statistical model for exploring the relationship between a numerical re-

sponse variable and several explanatory variables. Logistic regression secures the role of linear regression for the
dichotomous response variable. In this paper, we propose a biplot-type display of the multivariate data guided by
the linear regression and/or the logistic regression. The figures show the directional flow of the response variable
as well as the interrelationship of explanatory variables.
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1. Background and Aim

For the graphical display of n × p multivariate data X, the biplot initiated by Gabriel (1971) maps
n observations in a lower-rank linear space and represents p variables in the same graph. There
are several versions of biplots, among which the canonical version is the principal components (PC)
biplot. In the two-dimensional PC biplot, n observations and p variables are dotted respectively by
the rows of XV(2) and the rows of V(2), where V is p × p matrix consisting of all eigenvectors of
XtX and V(2) is the p × 2 submatrix of V corresponding to two principal eigenvalues. PC biplot is
very useful in exploring the pattern in observations and the interrelationship among variables. Details
of the methodology can be found at Lebart et al. (1984) and Huh (2011a). Several extensions and
modern formulations can be found at Gower and Hand (1996) and Greenacre (2010).

In this study, we consider the data sets of n observations of one response variable and p (≥ 2)
explanatory variables. Response variable could be numerical or dichotomous. We suppose the data is
modeled by either linear regression or logistic regression, according to the data type of the response
variable. The aim of the paper is to build a biplot of the n × p dataset of explanatory observations
guided by the linear regression and/or the logistic regression. Thus the graphs proposed in this paper
can be regarded as a supervised biplot.

2. Biplot with Linear Regression

For the numerical response variable Y , we suppose that p numerical (or possibly dummy) variables
X1, . . . , Xp are put for explanatory purpose in a linear regression model. Assuming all the variables
are standardized with means zero and standard deviations 1, we write the fitted model as

Ŷ = b0 + b1X1 + · · · + bpXp,
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where b1, . . . , bp are regression coefficients of p explanatory variables. Hence

v[1] =
b
∥b∥ , for b = (b1, . . . , bp)t

is the unit vector indicating the flow of Y in increasing direction as modeled by a linear regression.
Even though b0 = 0 when the model is fitted by least squares (LS), we will retain b0 to deal with
alternative fits of the model.

Denoting x1, . . . , xn for n observations of (X1, . . . , Xp), we consider the projections of xi onto v[1]

for i = 1, . . . , n. From the process, we obtain the secondary component x[2]
i of xi that is orthogonal to

v[1].
The collection of all secondary components x[2]

1 , . . . , x[2]
n can be portrayed by their projections onto

a unit directional vector, say v. In ordinary cases, the best choice of v is determined by maximizing
the total squared lengths of the projections for the largest complimentary spread. That is,

max
v

n∑
i=1

∥∥∥∥ x[2]
i −

(
vtx[2]

i

)
v
∥∥∥∥2

subject to vtv = 1.

Then, the formulation is exactly same as the principal component analysis of

X[2] =


x[2]t

1
...

x[2]t
n


which is an n × p data matrix, of which each row vector is orthogonal to v[1]. Therefore, the optimal
v, denoted by v[2], is the principal eigenvector of X[2]tX[2]. Clearly, v[2] is orthogonal to v[1].

We propose a biplot on the two-dimensional plane for the linear regression case:

For the observations, plot
(
xt

iv
[1], xt

iv
[2]

)
, for i = 1, . . . , n.

For the variables, plot c
(
v[1]

j , v
[2]
j

)
, for j = 1, . . . , p.

On the above line, v[k]
j is the jth component of v[k] and c is a constant such as 1, 2, or 3, suitably

chosen not to make the graph over-crowded. In the figures, we set c = 3 and the vertical axis as the
first dimension and the horizontal axis as the second dimension, to imply that the response (or the
response variable) increases along the vertical axis. Obviously, we can extend the plot to be displayed
on three or more dimensional plane.

As a numerical illustration, consider the stack loss data (Brownlee, 1965) of which the response
variable is the loss of ammonia (= Y) and the explanatory variables are air flow (= X1), water temper-
ature (= X2) and acid concentration (= X3). The number of observations is 21 (= n).

The LS fitted linear regression is

Ŷ = 0.645X1 + 0.403X2 − 0.080X3
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Figure 1: A biplot of the stack loss data, with the linear regression fit along the vertical axis

on the standardized variables. Thus first directional vector in the explanatory space is

v[1] =

 0.645
0.403
−0.08

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

0.645
0.403
−0.08

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
=

 0.844
0.526
−0.105

 .

The second directional vector in the explanatory space is obtained by eigen-decomposing X[2]tX[2],
where

X[2] = X − X v[1]v[1]t.

The principal eigenvalue of X[2]tX[2] occupies 87% of total eigenvalues. Corresponding eigenvector
is given as

v[2] = (0.118, 0.009, 0.993)t.

With these two directional vectors v[1] and v[2], the two-dimensional biplot is produced. See Figure 1.
In the figure, we see that the regression fit is determined primarily by the air flow (= X1) and

secondly by water temperature (= X2). The influence of acid concentration (= X3) is negative but
apparently weak. The plot shows that observations spread to equal degree along the vertical axis (=
regression fit) and the horizontal axis (= principal spread). Major determinant of the horizontal axis
is the acid concentration (= X3).
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Figure 2: A biplot of the stack loss data, with the linear regression fit and the observed response values along the
vertical axis

In the proposed plot, we may add the observed values of Y by noting that the vertical coordinate
for an arbitrary case x is given by

xtv[1] =
xtb
∥b∥ =

Ŷ − b0

∥b∥ .

Hence, the case observation Y can be marked at (Y − b0)/∥b∥. See Figure 2. In the figure, open circles
represent observed response values. We see that the case 21 has a conspicuously large size of negative
residual and that the case 4 has a large size of positive residual.

3. Biplot with the Logistic Regression

For the dichotomous response variable Y(= 0, 1), we suppose that p numerical variables X1, . . . , Xp

are put for explanatory purpose in the logistic regression model. Assuming all explanatory variables
are standardized with means zero and standard deviations 1, we write the fitted model as

log
P̂

1 − P̂
= b0 + b1X1 + · · · + bpXp,

where P̂ = P̂{Y = 1|X1, . . . , Xp} and b1, . . . , bp are regression coefficients of p explanatory variables.
Hence

v[1] =
b
∥b∥ , for b =

(
b1, . . . , bp

)t

is the unit vector indicating the direction of increasing P̂ as modeled by the logistic regression. Hence
the building elements of the graphics are exactly same as those of the linear regression case.
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Figure 3: A biplot of the magazine data, with the logistic regression fit along the vertical axis

As a numerical illustration, we consider the “magazine data” of which the response variable is the
intention to subscribe a particular magazine (= Y) and the explanatory variables are gender (= X1),
age (= X2), social affinity (= X3), and political propensity (= X4). X1 is dummy (1 = male, 0 =
female), and X2 to X4 are numerical (Huh, 2011b). Number of cases is 40 (= n).

The biplot is shown in Figure 3, of which the filled/open circles represent the cases with/without
the intention to subscribe the magazine. In the plot, we see that the social affinity and the age are two
major determinants of Y and that the males are less likely to respond positively compared to females.
Influence of the political propensity is weakly negative.

Horizontal axis line does not necessarily indicate the fitted probability 50%. Rather, it represents
the probability level exp(b0)/{1 + exp(b0)} (= P̂0). In the numerical example, b0 = −0.019 and, thus,
P̂0 = 0.495.

We may add contour lines for specified probability levels for 0 < P̂ < 1, noting that the covariate
x associated to P̂ is dotted on the vertical axis at

xtv[1] =
xtb
∥b∥ =

1
∥b∥

(
log

P̂
1 − P̂

− b0

)
.

Figure 4 shows the contour levels for P̂ = 0.05, 0.25, 0.5, 0.75, 0.95 for the magazine data. The case
32 with no intention (Y = 0) is rather exceptional, since it is predicted that the case is very likely to
subscribe the magazine (Y = 1) with probability larger than 95%.

4. Subset Regression

Sometimes, we select a subset of all available explanatory variables to be included in the regression
model by various methods. Then, having a subset of unselected variables at hand, we may be in-
terested in how they are related to the selected variables. Unselected variables could be related to
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Figure 4: A biplot of the magazine data, with the logistic regression fit and the predicted probability contours
along the vertical axis

the response variable, but they are masked by selected ones. Or, they are not related to the response
variable nor to the selected explanatory variables.

To study the interrelationship among all explanatory variables in the setting of subset regression,
we propose a projection scheme of p explanatory vectors of length n on the factor score vectors u1
and u2 derived from the subset of k explanatory variables, where

u1 =
√

n − 1
X(k)v[1]∥∥∥X(k)v[1]

∥∥∥ , u2 =
√

n − 1
X(k)v[2]∥∥∥X(k)v[2]

∥∥∥ ,
denoting that X(k) is the n × k submatrix of X with k selected variables, v[1] is the k × 1 unit vector
derived from the subset regression coefficients, v[2] is the k × 1 unit vector determining the primary
principal component of complementary explanatory vectors after the regression. Even though v[1] and
v[2] are orthogonal, u1 and u2 may not be so. Thus, we rewrite u2 by

√
n − 1

(
u2 −

ut
1u2

n − 1
u1

) / ∥∥∥∥∥∥
(
u2 −

ut
1u2

n − 1
u1

)∥∥∥∥∥∥ ,
to secure the orthogonality of u1 and u2. Then, we project all p explanatory vectors of length n onto
the linear space spanned by u1 and u2, to obtain the map of both selected and unselected explanatory
variables.

Now, we illustrate our procedure with the aerobic fitness data (SAS Inc., 2009). Being measured
from thirty one males, the response variable is the oxygen uptake rate (= Y), that could be explained
by six variables: age (= X1), running time (= X2), run pulse (= X3), weight (= X4), max pulse (= X5),
and rest pulse (= X6). We suppose that the data modeler decided to include X1, X2 and X3 in the linear
regression (p = 6, k = 3).
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Figure 5: A biplot of the aerobic fitness data, with the linear regression fit by three explanatory variables along
the vertical axis
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Figure 6: Selected and unselected explanatory variables of the aerobic fitness data

Figure 5 is the biplot guided by the subset regression. Vertical axis indicates that the response
variable (oxygen uptake rate) is determined firstly by (negative) “rtm” (runtime), secondly by (neg-
ative) “age” and (negative) “run” pulse. Horizontal axis shows that the observation units are widely
spread by “age” and “run” pulse.
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Figure 6 visualizes the interrelationship among selected and unselected variables. We find that 1)
the “wgt” (weight) is not related to all the variables of the model including the response variable, and
that 2) the “max” pulse and the “rst” (rest) pulse are represented by the run pulse fairly well.

5. Concluding Remarks

Proposed graphical methods can be applied to visualize the datasets guided by any statistical model
based on the linear combination of explanatory variables. For example, the models could be general-
ized linear models other than the logistic regression and/or the linear support vector machines. Huh
and Park (2009) suggested the latter case.

Since proposed methods use a dimensional reduction tool to visualize the multidimensional data,
usefulness of the output picture could be limited for the cases in which the number of explanatory vari-
ables is large, i.e. p ≥ 10. In such cases, one may pursue further exploration of X[2], the explanatory
data matrix after linear/logistic regression, with dynamic graphical methods.
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