A regression model represents the relationship between explanatory and response variables. In real life, explanatory variables often affect a response variable with a certain time lag, rather than immediately. For example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models have been successfully used to model various relationships, most of them do not consider the time lags between explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models, which automatically finds the time lags between explanatory and response variables. The proposed method finds out which of the past values of the explanatory variables minimize the error of the model, and uses the found values to determine the time lag between each explanatory variable and response variables. After determining the time lags between explanatory and response variables, the proposed method trains the deep learning model again by reflecting these time lags. Through various experiments applying the proposed method to a few deep learning models, we confirm that the proposed method can find a more accurate model whose error is reduced by more than 60% compared to the original model.
In this paper, we consider the problem of constructing the lower cofidence intervals for the reliability P(X < Y z,w), where the stress X and the strength Y are the random variables with explanatory variables z and w, respectively. As an estimator of the reliability, a Mann-Whitney type statistic is considered. It is shown that under regularity conditions, the proposed estimator is asymptotically normal. Based on the result, the distribution free lower confidence intervals are constructed.
Journal of Korean Society for Atmospheric Environment
/
제27권3호
/
pp.358-366
/
2011
The purpose of this study was to analyze the monthly and seasonal PM10 data using the Autoregressive Error (ARE) model at the southern part of the Gyeonggi-Do, Pyeongtaek monitoring site in Korea. In the ARE model, six meteorological variables and four pollution variables are used as the explanatory variables. The six meteorological variables are daily maximum temperature, wind speed, amount of cloud, relative humidity, rainfall, and global radiation. The four air pollution variables are sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), carbon monoxide (CO), and ozone ($O_3$). The result shows that monthly ARE models explained about 17~49% of the PM10 concentration. However, the ARE model could be improved if we add the more explanatory variables in the model.
This research investigated the effect of socio-economic variables and economic distress variables on the university students' coping behavior in meal management. The data used in this research included 544 university students in Ulsan Areas. The independent explanatory power of socio-economic variables was larger than economic distress variables. But the explanatory power was increased in the regression analysis model that was included both the socio-economic variables and the economic distress variables. The influencing variables that effected the level of coping behavior in meal management were the amount of discretionary expenditure, gender, status of housing, employment distress and income distress.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1293-1300
/
2014
The temperature data influences on various policies of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly and seasonal temperature data at the northern part of the Chungcheong Namdo, Seosan monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). The result showed that the monthly ARE model explained about 39-63% for describing the temperature. However, the ARE model will be expected better when we add the more explanatory variables in the model.
In this paper, we obtain some a, pp.oximate confidence intervals for the reliability of the stress-strength model when the stress and strength each depend on some explanatory variables, respectively. Also we compare the confidence intervals via Monte Carlo simulation.
This objective study were to classify the contents of makeup behavior, to investigate the relationship between makeup behavior and sex role identity, and to examine how the makeup behavior, makeup satisfaction was influenced by sex role identity and demographics. To achieve this, the researchers surveyed 162 women for the ages of 18 through 25. The result of this study are followed. 1) Four factor of makeup behavior were sexual attractiveness, aesthetic, psychological dependence and makeup interest. 2) There were significant positive relationship between makeup behavior and sex role identity. 3) Sexual attractiveness were influenced by femininity, income. The explanatory power of the 2 variables were 8.5%. Aesthetic were influenced by masculinity. The explanatory power of the 1 variable was 9.2%. Psychological dependence were influenced by femininity. The explanatory power of the 1 variable was 8.2%. Makeup interest were influenced by masculinity, age. The explanatory power of the 2 variables were 9.0%. 4 Makeup satisfaction were influenced by sexual attractiveness, aesthetic. The explanatory power of the 2 variables were 22.1%.
Journal of the Korean Data and Information Science Society
/
제24권3호
/
pp.593-601
/
2013
We often need to include categorial variables as explanatory variables in regression models. The categorial variables in regression models can be quantified through dummy variables. In this study, we provide an education tool using Excel VBA for displaying regression lines along with test results for regression models with a continuous explanatory variable and one or two categorical explanatory variables. The regression lines with test results are provided step by step for the model(s) with interaction(s), the model(s) without interaction(s) but with dummy variables, and the model without dummy variable(s). With this tool, we can easily understand the meaning of dummy variables and interaction effect through graphics and further decide which model is more suited to the data on hand.
Communications for Statistical Applications and Methods
/
제20권4호
/
pp.301-309
/
2013
This paper predicts gross box office revenue for domestic films using the Korean film data from 2008-2011. We use three regression methods, Linear Regression, Random Forest and Gradient Boosting to predict the gross box office revenue. We only consider domestic films with a revenue size of at least KRW 500 million; relevant explanatory variables are chosen by data visualization and variable selection techniques. The key idea of analyzing this data is to construct the meaningful explanatory variables from the data sources available to the public. Some variables must be categorized to conduct more effective analysis and clustering methods are applied to achieve this task. We choose the best model based on performance in the test set and important explanatory variables are discussed.
Journal of Korean Society of Industrial and Systems Engineering
/
제39권1호
/
pp.123-129
/
2016
In the manufacturing industry fields, thousands of quality characteristics are measured in a day because the systems of process have been automated through the development of computer and improvement of techniques. Also, the process has been monitored in database in real time. Particularly, the data in the design step of the process have contributed to the product that customers have required through getting useful information from the data and reflecting them to the design of product. In this study, first, characteristics and variables affecting to them in the data of the design step of the process were analyzed by decision tree to find out the relation between explanatory and target variables. Second, the tolerance of continuous variables influencing on the target variable primarily was shown by the application of algorithm of decision tree, C4.5. Finally, the target variable, loss, was calculated by a loss function of Taguchi and analyzed. In this paper, the general method that the value of continuous explanatory variables has been used intactly not to be transformed to the discrete value and new method that the value of continuous explanatory variables was divided into 3 categories were compared. As a result, first, the tolerance obtained from the new method was more effective in decreasing the target variable, loss, than general method. In addition, the tolerance levels for the continuous explanatory variables to be chosen of the major variables were calculated. In further research, a systematic method using decision tree of data mining needs to be developed in order to categorize continuous variables under various scenarios of loss function.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.