References
- Breiman, L. (2001). Random Forests, Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Friedman, J. H. (1999a). Greedy Function Approximation: A Gradient Boosting Machine, Stanford University, http://www-stat.stanford.edu/jhf/ftp/trebst.pdf.
- Friedman, J. H. (1999b). Stochastic Gradient Boosting, Standford University, http://www-stat.stanford.edu/jhf/ftp/stobst.pdf.
- Neelamegham, R. and Chintagunta, P. (1999). A Bayesian model to forecast new product performance in domestic and international markets, Marketing Science, 18, 115-136. https://doi.org/10.1287/mksc.18.2.115
- R Core Team (2013). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing.
- Sawhney, M. S. and Eliashberg, J. (1996). A parsimonious model for forecasting gross Box-Office revenues of motion pictures, Marketing Science, 15, 112-131.
- Sharda, R. and Delen, D. (2006). Predicting box-office success of motion pictures with neural net-works, Expert Systems with Applications, 30, 243-254 https://doi.org/10.1016/j.eswa.2005.07.018
- Terry, N., Butler, M. and De'Armond, D. (2003). Determinants of the Box Office performance of motion pictures, Proceedings of the Academy of Marketing Studies, bf 8, 23-28.
- Vany, A. D. and Walls, W. D. (1996). Bose-Einstein dynamics and adaptive contracting in the motion picture industry, The Economic Journal, 106, 1493-1514. https://doi.org/10.2307/2235197
- Vany, A. D. and Walls, W. D. (1999). Uncertainty in the movie industry: Does star power reduce the terror of the Box Office?, Journal of Cultural Economics, 23, 285-318. https://doi.org/10.1023/A:1007608125988
Cited by
- Pre-production forecasting of movie revenues with a dynamic artificial neural network vol.42, pp.6, 2015, https://doi.org/10.1016/j.eswa.2014.11.022