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Abstract

In this paper, we obtain some approximate confidence intervals for the reliability
of the stress-strength model when the stress and strength each depend on some
explanatory variables, respectively. Also we compare the confidence intervals via
Monte Carlo simulation.

1. Introduction

An important extension of the stress-strength model allows the strength X
and the stress Y to depend on some explanatory variables. In many cases, an

experimenter has access to the measurements of some explanatory variables that
affect the strength or influence the stress. The additional information can play an
important role in the analysis by extending the classical stress-strength model to
include explanatory variables.

Duncan(1986) gave some specific examples of the strength-stress model with
explanatory variables. Guttman, Johnson, Bhattacharyya and Reisser(1988) obtained

an approximate confidence interval for reliability, R=P(X> Y| z, t), where X
and Y are independent normal variables with explanatory variables # and z,

respectively. Since the true distribution of the estimator for R is often kewed and

* This paper was support(in part) by Kyungpook National University Research Foundation, 1995.
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biased for a small sample and/or large value of R, the interval based on uttman

et. al. may deteriorate the accuracy. So we will use the bootstrap method to
rectify these problems. Efron(1979) initially introduced the bootstrap method to
assign the accuracy for an estimator. To construct approximate confidence interval
for a parameter, Efron(1981, 1982, 1987) and Hall(1988) proposed the percentile
method, the bias correct method(BC method), the bias correct acceleration method
(BCa method), and the bootsrap percentile-t method, etc.

In this paper, we obtain some approximated bootstrap confidence intervals for
the reliability of the stress-strength model when they are linearly related to
explanatory variables. Also we compare approximate confidence intervals via
Monte Carlo simulation.

2. Preliminaries

Suppose that X is related to p explanatory variables ¢ and Y is related to

¢ explanatory variables 2z according to the linear relationships,

X=8+ B(t— D+e
and

Y=ay+ a (z2— 2)+3, (2.1)
where A= (Bl,,[)’z,---,,b’p)' and a=(a/1,af2,---,a/q)' are regression coefficients
and the errors &€ and 4§ are independent random variables with N(O,ozl) and
N0, 63), respectively.

Let (X, t) and (Y;, 2,), i=1,-,m, j=1,-,n be samples from the

models in (2.1), and let #=m™! ¢, z= n‘lﬁ; z;, T=(4t, t,, tm)’
=

“
and Z=( zy, 29,", 2,), where T is mXg matrix and Z is »Xgq¢ matrix.

And let R(t z) be relability for a given ¢ and z, that Is,

R(t, 2)=P(X>Y]| ¢t z). Then the reliability for the strength-stress model
becomes
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R( t, z)= 0(p), (2.2)

where p=(BO-—aO+ B(t— - a(z— ._z))/v *+ 0.
Guttman et. al.(1988) show that the inferences of p are based on the statistic

given as
2=(B—a+ B(t—-D- a(z— )N &+ &, 23)

where (B, B, o, @) denotes the least squares estimators of (By, B,ay, a)

and (82, ?2) denotes the mean squares due to residual, that is,

F=(m=p "' 2 X~ Bo— B (1= D)
and

%=(n—q)_ljg(Y,~—&\0— 2 (z— )L (2.4)
They suggested that the estimator of R( ¢, 2) is given by

R(t, z)=0(). (2.5)

Also they proved that the distribution of 7 is asymptotically normal with mean o)

and variance 06,°=(1/N)+(0?/2¢), where N=(*+ d2)/(A(m) 4+ A,(n)52),
e= (G + A (t/(m=p)+ 4/ (n—a), Am)= t( T "'t and Adn)=
2(Z 27 'z

Therefore, they obtained an approximated 100(1 —2a)% normal confidence interval

for R( t, z) is given by
(0(o+ 5,2 , O(o+ 5,217, (26)

where ?f,, is computed by using ;21 and 522 in the formulars for N and ¢,

29 is the 100ath percentile of the standard normal distribution and @ denotes

the cumulative distribution function of a standard normal random variable.
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3. The Bootstrap Procedure

In this section, we describe the bootstrap procedure to obtain confidence

intervals for R(¢, z).
Given X=(x;,x,",x,») and Y=(y,y,*,¥,) from (2.1), the bootstrap

procedure may be described as following steps:

(1) Compute the plug-in estimators for (B, 8,a; @) and (d?,05), say
(B, B, g, @) and (&, 8‘;), respectively.
(2) Construct the sample distribution functions for the strength, say F,(from X)

and for the stress, say G,{(from _Y). That is,

Fn~N(B+ B(t=D, &)
and

G, ~N(a+ a(z—2), &) 3.1)

(3) Generate random samples of size m and = from fixed F, and G,,
respectively. The corresponding samples X = (x7, x5, ", X, ) and Y =01, v,
“*, ¥m, ) are called the bootstrap samples.

(4) Compute the bootstrap estimators for g, that is,

= (B -a+ B (t-D-d (=N &+ 5. 32

o~ Sk Ll PNt

where ,/8\0‘, a , B , a , o, o0, are computed based on bootstrap samples.

(5) Evaluate bootstrap estimators R ( £, 2)=@( ') for R( ¢, z).

~%h

(6) Repeat B times step (3)-(5), we obtain f?*b( t, z)=0(p ), b=1,2,---,B.

Let F(s)=P( R (¢t 2)<s) be the cumulative distribution function of the

bootstrap distribution of R ( #, z). Then we can obtain an approximation of

F(s) by F* as follows:
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F ()= % gz( R(t, 2)<9), (3.3)

where I( +) is an indicator function.

The bootstrap confidence limits that depend on the extreme tails of ﬁ‘\* will

require a large number of bootstrap samples to achieve acceptable accuracy.
Efron(1993) recommended that B should be =500 or 1000 in order to make the

variability of the bootstrap confidence limits acceptably low.

4. The Bootstrap Confidence Intervals for R( ¢, z)

Now, we will construct some bootstrap confidence intervals for R( ¢, z) in this
section.

Let 71 (@) be the 100a@ empirical percentile of the f?‘b( t, z). That is,

F " (a)=inf{s: F' (s)2a). (4.1)

Then first, an approximated 100(1 ~2a)% interval by bootstrap percentile method
(Efron(1981)) for R( t, z) is given as

( ), FF'1-2). (4.2)

Second, an approximated 100(1—2a)% interval by bias correct(BC) method
(Efron(1982)) for R( ¢, z) is given as

( B a), F' (@), (4.3)

where a,= (2 2+ 2?), a,= 02 2,+29"?) and

2= 0" B (R(t 2))= w‘l[% gz( Rt )< R( ¢ z>].
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Third, an approximated 100(1—2a)% interval by the bias correct acceleration
(BCa) method(Efron(1987)) requires computations of bias correction and acceleration
constants. In fact, the bias correct constant is same as that of bias correct

method. To obtain the acceleration constant ¢, for multiparameter family case we

replace the multiparameter family X={f (A)} by the least favorable one

parameter family Y= {f — (A1) }(See Efron(1987)), where 7 denotes parameter

7 +im
vector, /7; denotes sufficient statistics vector for 2, g denotes the least
favorable direction at 7= 7, and A=(X, Y). He used the least favorable one

parameter family to calculate an approximate value for the acceleration constant

1 70 (0)
6Vn (TP ()P

f (%, ) are of the form £ ,(x,3)=/fy(x,3) - exp( 7 (x,%) — ¥ 7).

a, a= where ¥( ) is a function such that the densities

In our cases, we can obtain a from many algebraic calculation, that is,

N (as+ay)
a —é— —(;1%_72)%/7 , (4.4)
where
g = ‘r/’s n 2¢id3— 4¢1¢3d1d3+2¢3d2
g = 2(_ 4 n 2¢3d; — 4¢2¢4d2d4+2¢’§d2
2 2\ & 44
o= M 243 n — 643 §ad + 129, $3d,\ds — 6¢3d"
L n (208 —64i¢di+ 120,didyds — 64id
b= g [ D d; 5 — dy— d, d;
! Vds+dy | m{ds+dy’ ™ Vds+d, | wds+d,

by = _¢( dy— ds ) di(dy — d5)

\/ d3+d4 m(a’3+d4)3/2 ’
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—_ _¢ dl"'dz d4(d1—d2)
Vds+d | n(dy+d)**

and d,= By+ B(t—D, dy= ay+ a (z— 2), dy= 8‘? and d4=?, where
¢( + ) denotes standard normal probability density function.

Therefore an approximated 100(1 - 2 @)% BCa interval for R( ¢, 2) is given as

( B ), F7 () (45)

where
a3 = Oz + (Z+2)/ (1~ alz+2))]

and
a; = O[z + (2\0+z“_"))/(I—ZZ\(E\O+2(1_“)))].

Finally, to obtain an approximated interval by bootstrap percentile-t interval
(Hall(1988)) for R(#, z), we let » t be an approximate bootstrap pivotal

quantity of }3, that is,
P r=(p =0/ 8‘) , (4.6)

~

where ap‘ is computed from @, based on bootstrap samples.

Let F '7 denote the empirical distribution function of To‘T given as
Fr9 = L3 ar <o), @

for all s. And let F T*_l(a) denotes the 100 th empirical percentile of the

~ %

o r given as

P N@) =inf{s: F7(9 2 a. 48)
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Then, an approximated 100(1-2 @ )% bootstrap percentile- ¢ interval for

R( t, z) is given by

(0(o+3,- F 7)), 0o+3,- EF 'r(1-a) ). (4.9)

5. Comparisons

In this Section, we evaluate the approximated confidence intervals presented in
Section 4 through simulation. Monte Carlo studies are performed for investigating
the adequacy of some methods given in Section 4.

Regression parameters #,m, B, a;, B, @ are chosen so that R(t, z) takes the

values of 0.1, 0.3, 0.5, 0.7, 0.9. For the sake of convenience, we only consider the

simple linear regression models for X and Y. We set both ¢ and z; as
+(i—1)/n, i=1,2-,n/2, symmetrically around the point zero. For each case,
we try simulation when ¢= t=0 and z= z=0. The equally chosen sample
sizes n# and m are 10, 20, 30, 50. The number of pairs of samples generated for

each combination of R( ¢, z) and #n{=m) is 500. For each independent random
samples, the approximated bootstrap confidence intervals were constructed by each
method with bootstrap replications B= 1000 times. Also the used confidence level
(1—2a2) is 0.90. <Table 4.1> and <Table 4.2> give the actual coverage
probabilities and interval lengths of the approximated confidence intervals,
respectively. The graphs for some cases of table 4.1-4.2 are given Figures 1-4.

<Figure 1> represents the plot of coverage probabilities against reliability when
n=m=10. <Figure 1> illustrates that the approximated bootstrap confidence
intervals is nearly always better than Guttman et.al’s interval regardless of the
reliabilities. In particular, Guttman et.al.’s interval is worse than the bootstrap
intervals for extreme values of reliabilities, say 0.1 or 0.9.

<Figure 2> represents the plot of coverage probabilities against sample size
when R(t z)=0.9. <Figure 2> show that the approximation to the nominal
confidence level 90% of bootstrap methods is better than that of Guttman et.al.’s
method. Since simulation results for other values of reliabilities are similar, we
don’t report here.
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<Figure 3> represents the plot of Interval lengths against reliabilities when
n=m=10. <Figure 3> illustrates that the bootstrap methods yield slightly longer
interval lengths than Guttman et.al.’s method. Also all interval lengths tend to
decrease as R( t, z) deviates from 0.5.

<Figure 4> represents the plot of interval lengths against sample size when
R(t, z)=0.9. <Figure 3> illustrate that interval length discrepancy by every
method tend to decrease as sample size increase. Since simulation results for other
values of reliabilities are similar, we don’t report here.

Bootstrap methods can require even more computing than Guttman et.al.’s
method, and up to hundreds to thousands of times more computing time than
using Guttman et.al.’s method. However, with high speed computers, even this

may not be a severe problem, and the improvement may often be worth the extra
cost.

< Table 4.1 > The Actual Coverage Probabilities of the Confidence Intervals

n(=m) | p( ¢t z)| Normal Percentile BC BCa Per-t
0.1 0.6820 0.9130 0.9200 0.9290 0.8380
0.3 0.8510 0.9190 0.9180 0.8900 0.9240
10 05 0.8800 0.8870 0.8720 0.8770 0.9130
0.7 0.8520 0.9170 0.9160 0.9150 0.9380
0.9 0.6540 09140 0.9200 0.9290 0.8450
0.1 0.7170 0.8940 0.9060 0.9180 0.8550
0.3 0.8670 0.8940 0.8950 0.8920 0.9070
20 05 0.8830 0.8850 0.8790 0.8860 0.8950
0.7 0.8720 0.8890 0.9020 0.8940 0.9290
0.9 0.6970 0.8780 0.8800 0.8140 0.8580
0.1 0.7260 0.8850 0.8960 0.9090 0.8590
0.3 0.8700 0.9020 0.9040 0.9020 0.8990
30 0.5 0.8860 (0.8890 0.8810 0.8950 0.8950
0.7 0.8870 0.9090 0.9150 0.9050 0.9190
0.9 0.7120 0.8790 0.8780 0.8870 0.8640
01 07710 0.9160 0.9070 0.9070 0.9040
0.3 0.8840 0.9000 0.8930 0.8990 0.9020
50 05 0.8980 0.8920 0.8940 0.8980 0.8980
07 0.8850 0.9130 0.9070 0.9060 0.9060
09 0.7810 0.8820 0.8850 0.8900 0.8770

Normal denotes interval based on normal-theory.

Percentile denotes interval based on percentile method.

BC denotes interval based on bias-correct method.

BCa denotes interval based on bias-correct acceleration method.
Per-t denotes interval based on percentile-t method.
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< Table 42 > The Interval Lengths of the Confidence Intervals

n(=m) R(—t,»:;) Normal | Percentile BC BCa Per-t
0.1 0.2936 0.3232 0.3229 0.3240 0.3314

0.3 0.3585 0.4147 0.4153 0.4191 0.4014

10 0.5 0.3809 0.4449 0.4456 0.4500 0.4233
0.7 0.3565 0.4160 0.4164 0.4195 0.4032

0.9 0.2910 0.3224 0.3221 0.3238 0.3324

0.1 0.1875 0.2241 (.2236 0.2242 0.2284

0.3 0.2594 0.2898 0.2911 0.2948 0.2843

20 05 0.2816 0.3070 0.3081 0.3119 0.2999
0.7 0.2591 0.2884 0.2894 0.2928 0.2831

09 0.1899 0.2262 0.2257 0.2262 0.2304

0.1 0.1458 0.1811 0.1807 0.1811 0.1840

0.3 0.2128 0.2362 0.2371 0.2405 0.2331

30 0.5 0.2331 0.2448 0.2456 0.2484 0.2414
0.7 0.2137 0.2359 0.2370 0.2405 0.2329

0.9 0.1470 0.1818 0.1813 0.1817 0.1846

0.1 0.1271 0.1383 0.1380 0.1386 0.1399

0.3 0.1656 0.1829 0.1836 0.1858 0.1814

50 05 0.1825 0.1887 0.1892 0.1910 0.1872
0.7 0.1662 0.1826 0.1835 0.1856 0.1812

0.9 0.1286 0.1388 0.1386 0.1392 0.1404
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<Figure 1> Plot of Coverage Probabilities

against Reliabilittes when n=m=10

<Figure 2> Plot of Coverage Probabilites
against Sample Sizes when R(¢, z2) =0.9
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< Figure 3 > Plot of Interval Lengths < Figure 4 > Plot of Interval Lengths
against Reliabilites when #=m=10 against Sample Sizes when R(¢, 2) =0.9
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