• Title/Summary/Keyword: Experimental modal parameter

Search Result 89, Processing Time 0.028 seconds

Experimental Study for Modal Parameter Estimation of Structural Systems (구조물의 자유진동특성 추정을 위한 실험적 연구)

  • 윤정방;이형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.175-182
    • /
    • 1994
  • As for the safety evaluation of existing large-scale structures, methods for estimation of the structural and dynamic properties are studied. Sequential prediction error method in time domain and improved FRF estimator in frequency domain are comparatively studied. For this purpose, impact tests of 2 bay 3 floor steel frame structure are performed. Results from both methods are found to be consistent to each others, however those from the finite-element analysis are slightly different from experimental results.

  • PDF

Experimental evaluation of crack effects on the dynamic characteristics of a prototype arch dam using ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The aim of the study is to determine the modal parameters of a prototype damaged arch dam by operational modal analysis (OMA) method for some damage scenarios. For this purpose, a prototype arch dam-reservoir-foundation model is constructed under laboratory conditions. Ambient vibration tests on the arch dam model are performed to identify the modal parameters such as natural frequency, mode shape and damping ratio. The tests are conducted for four test-case scenarios: an undamaged dam with empty reservoir, two different damaged dams with empty reservoirs, and a damaged dam with full reservoir. Loading simulating random impact effects is applied on the dam to crack. Cracks and fractures occurred at the middle of the upper part of the dams and distributed through the abutments. Sensitivity accelerometers are placed on the dams' crests to collect signals for measurements. Operational modal analysis software processes the signals collected from the ambient vibration tests, and enhanced frequency domain decomposition and stochastic subspace identification techniques are used to estimate modal parameters of the dams. The modal parameters are obtained to establish a basis for comparison of the results of two techniques for each damage case. Results show that approximately 35-40% difference exists between the natural frequencies obtained from Case 1 and Case 4. The natural frequencies of the dam considerably decrease with increasing cracks. However, observation shows that the filled reservoir slightly affected modal parameters of the dam after severe cracking. The mode shapes obtained are symmetrical and anti-symmetrical. Apparently, mode shapes in Case 1 represent the probable responses of arch dams more accurately. Also, damping ratio show an increase when cracking increases.

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

Structural System Parameter Estimation using Strain Output Feedback (스트레인 출력 되먹임을 이용한 구조 시스템 계수 추정)

  • Ha, Jae-Hoon;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.124-127
    • /
    • 2005
  • As computer capability and test skill become more and more advanced, finite element method and modal test are being widely applied in engineering design. In order to correlate and reconcile the inevitable discrepancies between the analytical and experimental models, many techniques have been developed. Among these methods, multiple-system methods are known as the effective tools in that they can supply the rich modal data available which are experimentally obtained. These abundant modal data can help structural system parameters estimated well. Multiple-system methods can be classified into the structural modification methods and feedback controller methods. The structural modification methods need the physical attachment of structures and their concept may limit the application of them. To overcome this drawback, the feedback controller methods are addressed which enable us to get more modal data without the structural change. Mode decoupling controller(MDC), one of them, is to use acceleration out)ut feedback to perturb an open-loop system. The output feedback controller generally cannot guarantee the stability of a closed-loop system. However, MDC can solve this problem under the certain constraints. So far, MDC utilizes accelerations as the sensor signals. In this research, strain sensors are going to be picked up to apply to the MDC. Strain output is recently used for structural system identification due to the drastically improved and miniaturized strain sensor. In this paper, we show that the MDC using strain output has differences compared with acceleration output in estimating the structural system parameters. The associated simulation is performed to demonstrate the above mentioned characteristics.

  • PDF

Updating Algorithms of Finite Element Model Using Singular Value Decomposition and Eigenanalysis (특이값 분해와 고유치해석을 이용한 유한요소모델의 개선)

  • 김홍준;박영필
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.163-173
    • /
    • 1999
  • Precise and reasonable modelling is necessary and indispensable to the analysis of dynamic characteristics of mechanical structures. Also. the effective prediction of the change of modal properties due to the variation of design parameters is required especially for the application of finite element method to the structural dynamics problems. To meet those necessity and requirement, three model updating algorithms are proposed for finite element methods. Those algorithms are based on sensitivity analysis of the modal data obtained from experimental modal analysis(EMA) and analytical modal analysis(AMA). The adapted sensitivity analysis methods of the algorithms are 1)eigensensitivity(EGNS) method. 2)frequency response function sensitivity(FRFS) method. 3)sensitivity based element-by-element method (SBEEM), Singular value decomposition(SVD) is used for performing eigenanalysis and parameter estimation in the updating process. Those algorithms are applied to finite element of a plate and the updating capability of each algorithm is compared in terms of accuracy. reliability and stability of the updating process. It is shown that the model updating method using frequency response function is superior to the other methods in view of various updating capabilities.

  • PDF

Dynamic Analysis of Design Data for Structural Lap Joint (LAP 구조물 결합부의 설계치 확보를 위한 동역학적 해석)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.57-74
    • /
    • 1998
  • This paper is concerned with a combination of experimental and analytical investigation aimed at identifying modeling errors, accounted for the lack of correlation between experimental measurements and analytical predictions of the modal parameters for lap joint panels. A nonlinearity vibration test methodology, initiated from the theoretical analysis, is suggested for measurements of dynamic stiffnesses in a lap joint using the rivet fastener. Based on the experimental evidence on discrepancies between measured and predicted frequencies, improved finite element models of the joint are developed using PATRAN and ABAQUS, in which the beam element size is evaluated from the joint stiffnesses readily determined in the test. The beam element diameter as a principal design parameter is tuned to match experimental results within the evaluated bound value. Frequencies predicted by the proposed numerical model are compared with frequencies measured by the test. Improved predictions based on this new model are observed when compared with those based on conventional modeling practices.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.601-606
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake Using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;홍정혁;이유엽;이정윤;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.702-708
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type Instability is Investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

Identification of Model Parameters by Sequential Prediction Error Method (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • 윤정방;이창근
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.143-148
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the auto regressive and moving average model with auxiliary stochastic input(ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story budding model subject to ground exitations.

  • PDF

An Experimental Study for the Development of Epoxy Adhesives for Optical Top (광학정반용 에폭시 접착제 개발을 위한 실험적 연구)

  • Gil, Hyeong-Gyeun;Youn, Seok-Weon;Kim, Kwang-San
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.727-733
    • /
    • 2010
  • Optical tables provide a platform for the establishment and test of measurement systems which use Laser. Therefore, not only static characteristics such as surface flatness, static stiffness and etc. but dynamic response characteristics is very important design parameter. The dynamic stiffness is generally estimated through the modal test, and compliance is used as a representative performance standard. Recently there is an example of defining the dynamic deflection coefficient and using it as a new performance standard of the dynamic stiffness, but it is not generalized yet in industry. In this study, we verify the validity of existing DDC calculus by making an experiment on granite. And for improvement in damping performance of optical tables, we are going to evaluate the effect of fillers on the compliance, then develop an epoxy adhesive based on the result of this experiment.