• Title/Summary/Keyword: Experimental designs

Search Result 742, Processing Time 0.033 seconds

Effect of Steam Curing on Concrete Piles with Silica Fume

  • Yazdani, N.;F. Asce, M. Filsaime;Manzur, T.
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Silica fume is a common addition to high performance concrete mix designs. The use of silica fume in concrete leads to increased water demand. For this reason, Florida Department of Transportation (FDOT) allows only a 72-hour continuous moist cure process for concrete containing silica fume. Accelerated curing has been shown to be effective in producing high-performance characteristics at early ages in silica-fume concrete. However, the heat greatly increases the moisture loss from exposed surfaces, which may cause shrinkage problems. An experimental study was undertaken to determine the feasibility of steam curing of FDOT concrete with silica fume in order to reduce precast turnaround time. Various steam curing durations were utilized with full-scale precast prestressed pile specimens. The concrete compressive strength and shrinkage were determined for various durations of steam curing. Results indicate that steam cured silica fume concrete met all FDOT requirements for the 12, 18 and 24 hours of curing periods. No shrinkage cracking was observed in any samples up to one year age. It was recommended that FDOT allow the 12 hour steam curing for concrete with silica fume.

An Experimental Study on the Behavior of Miscopiles installed in Weathered Weak Rock (풍화암 지반에 설치된 소구경말뚝의 거동에 관한 연구)

  • 박성재;정경환;이세훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.389-396
    • /
    • 1999
  • In this study compressive and tensile load tests have been performed to investigate reinforcing effect and load transfer mechanism of small diameter piles installed in the foundation soil for the marine suspension bridge. Load tests were carried out on steel plate with diameters of 50cm, 100cm and 150cm varying loads starting from 39 tons up to 314 tons. Small diameter piles were proved to behavior like as friction piles and loads were not transmitted to the bottom of piles. From pull-out tests, the uplift capacity of small diameter piles was largely influenced by reinforcing materials compared to frictional resistance between piles and adjacent soils. The bearing capacity of small diameter piles appeared to be higher than the ultimate bearing capacity evaluated using static formulae. The load carrying capacity of small diameter piles was superior to the bored piles with a similar size. Thus, ultimate bearing capacity estimated from static formulae can provide conservative designs and thereby resulting in economic disadvantages. A further study to accumulate data regarding various soil conditions is recommended for an improved estimation of bearing capacity of piles with small diameter.

  • PDF

Shape Optimization of Cooling Channel with V-shaped Ribs (V-형 리브가 부착된 냉각유로의 형상 최적설계)

  • Lee, Young-Mo;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.7-15
    • /
    • 2007
  • A numerical procedure for optimizing the shape of three-dimensional channel with V-shaped ribs extruded on both walls has been carried out to enhance the turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Wavier-stoked analysis. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show good agreements with experimental data. The objective function is defined as a linear combination of heat transfer and friction loss-related terms with a weighting factor. Three dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, and the attack angle of the rib are chosen as design variables. Nineteen training points obtained by D-optimal designs for three design variables construct a reliable response surface. In the sensitivity analysis, it is found that the objective function is most sensitive to the ratio of rib height-to-channel height ratio. And, optimal values of design variables have been obtained in a range of the weighting factor.

A New Multi-site Test for System-on-Chip Using Multi-site Star Test Architecture

  • Han, Dongkwan;Lee, Yong;Kang, Sungho
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.293-300
    • /
    • 2014
  • As the system-on-chip (SoC) design becomes more complex, the test costs are increasing. One of the main obstacles of a test cost reduction is the limited number of test channels of the ATE while the number of pins in the design increases. To overcome this problem, a new test architecture using a channel sharing compliant with IEEE Standard 1149.1 and 1500 is proposed. It can significantly reduce the pin count for testing a SoC design. The test input data is transmitted using a test access mechanism composed of only input pins. A single test data output pin is used to measure the sink values. The experimental results show that the proposed architecture not only increases the number of sites to be tested simultaneously, but also reduces the test time. In addition, the yield loss owing to the proven contact problems can be reduced. Using the new architecture, it is possible to achieve a large test time and cost reduction for complex SoC designs with negligible design and test overheads.

Statistical Optimization of Medium Composition for Growth of Leuconostoc citreum

  • Kim, Hyun;Eom, Hyun-Ju;Lee, Jun-soo;Han, Jin-soo;Han, Nam-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.278-284
    • /
    • 2004
  • Leuconostoc citreum is one of the representative strains of Leuconostoc spp. that show fast growth rates in fermented vegetables. Sequential experimental designs including the Plackett-Burman design, fractional factorial design, steepest ascent analysis, central composite design and response surface methodology were introduced to optimize and improve the medium for L. citreum. Fifteen medium ingredients were examined and glucose ($20 g/\ell$), yeast extract ($12.5g/\ell$), sodium acetate trihydrate ($6.12g/\ell$), potassium phosphate ($42.55g/\ell$), and dibasic ammonium citrate ($4.12g/\ell$), were chosen as the best components to give a critical and positive effect for cell-growth. The biomass was increased to ($2.79g/\ell$), (169%), compared to the $1.65g/\ell$ in MRS medium.

Minimization of Initial Deflection of Multi-Layered Micro-Actuator with Step-Up Structure (Step-Up 구조를 갖는 다층박막 초소형 구동소자의 초기변형 최소화에 관한 연구)

  • Lee, Hee-Joong;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2415-2420
    • /
    • 2002
  • In the present study, a new anchor design was proposed to minimize the initial deflection of micro multi-layer cantilever beam with step-up structure, which is a key component of thin film micro-mirror array. It is important to minimize the initial deflection, caused by residual stress, because it reduces the performance of the actuation. Theoretical and experimental studies were conducted to examine the cause of the initial bending deflection. It was found that the bending deflection at the anchor of the cantilever beam was the primary source of initial deflection. Various anchor designs were proposed and the initial deflections for each design were calculated by finite element analysis. The analysis results were compared with experiments. To reduce the initial deflection a secondary support was added to the conventional structure. The optimal shapes were obtained by simulation and experiment. It was found from the analysis that the ratio or horizontal and vertical dimensions of secondary support was the governing factor, which affected the initial deflection.

Performance Comparison of Two Airfoil Rotor Designs for an Agricultural Unmanned Helicopter

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: The most important element of an agricultural helicopter is the rotor blade realizing lift force. In order to improve the performance of the rotor blades, two types (KA152313 and KB203611) of airfoils were designed and compared. Methods: The nose shape of the KB203611 airfoil was 'drooped' and 'sharp' compared to the leading edge of the KA152313 airfoil. The performance of the experimental airfoils was simulated using CFD-ACE program, and lifts were measured in situ using the 'AgroHeli-4G', a prototype helicopter. Results: Simulated lifts of the blade with the KA152313 airfoil showed proper values for a wide range of angles of attack between $14^{\circ}{\sim}18^{\circ}$, while the simulated lift of the KB203611 blade exhibited maximum values near $13^{\circ}{\sim}14^{\circ}$. In the lift measurements, the range of operable angles of attack was a collective pitch angle at the grip (GP) of $12^{\circ}{\sim}18^{\circ}$ for the KA152313 blade. On the other hand, the range of angles of attack for the KB203611 blade was a GP of $12^{\circ}{\sim}14^{\circ}$. Conclusions: The blade of KA152313 performed well over a wide range of AoAs and the blade of KB203611 performed better at low AoAs. In this study, a variative airfoil blade, gradually emerging from grip to tip using the two different airfoils, was suggested.

Reduction of Surface Roughness and Build Time with Model Splitting Method for Multi-Jet Modeling 3D Printer Parts (Multi-Jet Modeling 3차원 프린트를 위한 표면거칠기와 제작시간의 저감을 위한 모델 분할제작)

  • Kim, Ho-Chan;Lee, In-Tak;Lee, Kyung-Chang;Lee, Suk;Lee, Seok-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.807-814
    • /
    • 2003
  • 3D printers are widely used to verify the designs in the early stage of product development, and are required to have short build time. However, the build time is still too long for a quick design review for engineers. This research focuses on how to split the prototype in order to reduce the build time and improve surface roughness. In order to verify the feasibility of prototype splitting, the build time and the roughness have been experimentally measured for various parts and build orientations. Based on the experimental results an expert system was developed for splitting the original CAD mod el by using an efficient splitting method. It can recommend a splitting plane based on build time, surface roughness and the number of divided parts. It is shown that the model splitting reduces the build time significantly and improves surface quality wit bout rough surfaces where the support was removed.

Literature Review of Cognitive Developmental Interventions on Patients with Breast Cancer undergoing Chemotherapy (항암화학요법 유방암환자의 인지기능 증진 중재에 대한 논문 분석)

  • Choi, Eun-Hee;Chung, Bok-Yae;Kim, Gyung-Duck;Kim, Kyung-Hae;Byun, Hye-Sun
    • Asian Oncology Nursing
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Purpose: The purpose of this study was to analyze the trend of cognitive developmental interventions on patients with breast cancer who underwent chemotherapy. Methods: The researcher searched databases and selected 17 literatures using chemotherapy, breast cancer, cognitive function and intervention as searching key words. Searched databases included Ovid, Pubmed, Proquest and Medline and data collection period was from January 2000 to May 2010. Results: Interventions for patients with breast cancer have been continuously developed and frequent research topics included breast cancer, chemotherapy, quality of life, and cognitive function. In terms of study design, four research articles were pre-experimental study designs, one was case study, and the rest of studies were non-equivalent pretest-posttest control group design. Effects of intervention were examined in only 5 studies among 17. The interventions were not found to have direct effects in cognitive improvement. Conclusion: It is needed to figure out the mechanism of cognitive deterioration of the patients with breast cancer who underwent chemotherapy. And nursing interventions needs to be developed in order to hold up the cognitive downhill and help their cognitive rehabilitation.

An Optimum Design of Secondary Battery Using Design of Experiments with Mixture (혼합물실험계획법을 이용한 2차전지의 최적설계)

  • Kim, Seong-Jun;Park, Jong-In
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.983-989
    • /
    • 2005
  • Secondary batteries with high performance are essential in widespread use of modern portable devices such as cellular phones and laptop computers. High energy density, long cycle life, and safety are some of important requirements for secondary battery. To achieve such characteristics, a mixing proportion of electrolyte solution ingredients in the battery should be carefully chosen. In this paper, using statistical design of mixture experiments (DOME), we attempt to find an optimum condition of designing the secondary battery. DOME has a distinct feature in that the experimental region is represented by simplex, rather than hypercube, because the sum of blend proportions should be unity. Several designs based upon this point have been proposed for mixture experiments. Among them, an extreme vertices design is employed in this paper because there are a couple of blend constraints to be considered. In order to investigate how the mixing proportion interacts with other manufacturing factors, a fractional factorial design is also included across the extreme vertices design. As a result, we find that the blend proportion of solution ingredients has a significant effect on battery performances. By simultaneously optimizing two battery capacities, this paper proposes an optimum blend proportion according to process factor settings.

  • PDF