• Title/Summary/Keyword: Experimental compensation

Search Result 1,013, Processing Time 0.031 seconds

Fast Affine Motion Estimation Method for Versatile Video Coding (다목적 비디오 부호화를 위한 고속 어파인 움직임 예측 방법)

  • Jung, Seong-Won;Jun, Dong-San
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.707-714
    • /
    • 2022
  • Versatile Video Coding (VVC) is the most recent video coding standard, which had been developed by Joint Video Expert Team (JVET). It can improve significant coding performance compared to the previous standard, namely High Efficiency Video Coding (HEVC). Although VVC can achieve the powerful coding performance, it requires the tremendous computational complexity of VVC encoder. Especially, affine motion compensation (AMC) was adopted the block-based 4-parameter or 6-parameter affine prediction to overcome the limit of translational motion model while VVC require the cost of higher encoding complexity. In this paper, we proposed the early termination of AMC that determines whether the affine motion estimation for AMC is performed or not. Experimental results showed that the proposed method reduced the encoding complexity of affine motion estimation (AME) up to 16% compared to the VVC Test Model 17 (VTM17).

Dynamic Modeling-based Flight P-PD Controller Applied to a Quadrotor

  • Jin, Tae-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.513-519
    • /
    • 2022
  • In this paper, we describe performances of P-PD controllers in the quadrotor system with steady-state error compensation by adding a corrective term to the system input. A decentralized control system using P-PD controllers was successfully implemented on a quadrotor platform. We also presented the results of a mathematical modeling analysis for control the quadrotor and experimental results for each response performance according to the heading reference value in accordance with the mathematical modeling and P-PD controller design. A control experiment with the real system was implemented for the test platform, and the results were evaluated and compared.

Limiting Motion Search Range for the Pseudo Video Sequence-based Light Field Image Coding (유사 비디오 시퀀스 기반의 라이트필드 영상 부호화를 위한 움직임 탐색 영역 제한)

  • Yim, Jonghoon;Duong, Vinh Van;Huu, Thuc Nguyen;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.182-183
    • /
    • 2022
  • The large data volume of light field (LF) image has motivated much research on how to compress the data volume more efficiently. One of the approaches is to compress LF images after representing them in the form of pseudo video sequence. In this way, the pseudo temporal redundancy between views can be exploited by motion estimation and compensation. Based on our observation that images obtained by LF cameras have small range of disparity values between adjacent views, we propose to limit the motion search range to reduce the time complexity of motion estimation. Our experimental results show that a smaller motion search range reduces the encoding time while not affecting the bitrate of H.266/VVC much.

  • PDF

Anomaly Sewing Pattern Detection for AIoT System using Deep Learning and Decision Tree

  • Nguyen Quoc Toan;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has recently gained popularity. Deep neural networks (DNNs) have achieved great success in many applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-based system for smart sewing automation using edge devices. Our technique included developing a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for our defective sewing stitches detection model, to detect anomalies and classify the sewing patterns. According to the experimental testing, the proposed approach achieved a perfect score with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0, and a speed of 0.07 seconds with file size 2.43MB.

Compensation of Pseudo Gyro Bias in SDINS (SDINS에서 의사 자이로 바이어스 보상 기법)

  • Jungmin Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.

Application and Validation of Delay Dependent Parallel Distributed Compensation Controller for Rotary Wing System (회전익 시스템의 시간지연 종속 병렬분산보상제어기 적용과 검증)

  • You, Young-Jin;Choi, Yun-Sung;Jeong, Jin-Seok;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1043-1053
    • /
    • 2016
  • In this paper, the application of Parallel Distributed Compensation (PDC) controller for fixed pitch rotary wing system was studied. For nonlinear modeling, T-S fuzzy model was utilized to advance system control including the tilt type UAV. PDC controller was designed through the Linear Matrix Inequality (LMI). Experiments for determining the applicability and feasibility of PDC were performed using the 1 axis attitude control equipment and simulation. To verify the performance and characteristics of the controller, Mathworks Co. Simulink was used. After then, the PDC controller performance was verified and the results with developed controller using a 1 axis attitude control equipment were compared. Verification of the feasibility of PDC controller for the fixed pitch rotary wing system and identification of the overall performance and improvement analysis was conducted based on the experimental results.

Design of Real-Time Dead Pixel Detection and Compensation System for Image Quality Enhancement in Mobile Camera (모바일 카메라 화질 개선을 위한 실시간 불량 화소 검출 및 보정 시스템의 설계)

  • Song, Jin-Gun;Ha, Joo-Young;Park, Jung-Hwan;Choi, Won-Tae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • In this paper, we propose the Real-time Dead-Pixel Detection and Compensation System for mobile camera and its hardware architecture. The CMOS image sensors as image input devices are becoming popular due to the demand for miniaturized, low-power and cost-effective imaging systems. However a conventional Dead-Pixel Detection Algorithm is disable to detect neighboring dead pixels and it degrades image quality by wrong detection and compensation. To detect dead pixels the proposed system is classifying dead pixels into Hot pixel and Cold pixel. Also, the proposed algorithm is processing line-detector and $5{\times}5$ window-detector consecutively. The line-detector and window-detector can search dead pixels by using one-dimensional(only horizontal) method in low frequency area and two-dimensional(vertical and diagonal) method in high frequency area, respectively. The experimental result shows that it can detect 99% of dead pixels. It was designed in Verilog hardware description language and total gate count is 23K using TSMC 0.25um ASIC library.

  • PDF

Experimental Study on Compressibility Modulus of Pressure Compensation Oil for Underwater Vehicle (심해 장비용 압력보상유의 압축성 계수 측정을 위한 실험적 연구)

  • Kim, Jin-Ho;Yoon, Suk-Min;Hong, Sup;Min, Cheon-Hong;Sung, Ki-Young;Yeu, Tae-Kyeong;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.73-80
    • /
    • 2015
  • In order to determine the appropriate volume of the a pressure compensator of deep seabed mining robots, this paper reports on an experimental test for oil volume change in an oil-filled box. At the design stage of underwater robots, it is crucial to determine the capacity of the hydraulic compensator which is replenished as much as the contracted oil volume of the robots. A pilot mining robot, MienRo was designed to work under 6,000 m in the deep sea. The hydraulic actuating oil and pressure compensating oil of MineRo may be exposed at a hydrostatic pressure environment of 600 bar. Although the oil can be assumed to be incompressible, its volume is actually changed under high pressure conditions due to air contained in the oil and oil contraction. To determine the capacity of the pressure compensator, the oil contraction rate should be verified through an experimental test using a hyperbaric chamber.

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.694-699
    • /
    • 2002
  • As the demand for slim laptops requires ion'-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method far anti-vibration mechanism with respect to the existing servo gain plot. This method verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

  • PDF

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.833-839
    • /
    • 2002
  • As the demand for slim laptops requires low-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method for anti-vibration mechanism with respect to the existing servo gain plot. Thismethod verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.