• Title/Summary/Keyword: Expectation maximization

Search Result 222, Processing Time 0.029 seconds

A Pilot Symbol Based Coherent QAM Decoder for a Wireless Channel (파일럿 패턴을 이용한 무선 QAM 송수신 기술 연구)

  • Kim, Han-Il;Han, Jae-Choong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.400-405
    • /
    • 2001
  • Quadrature Amplitude Modulation(QAM) is well known a bandwidth efficient modulation scheme. However, its use for mobile communications has been limited due to noise and signal distortion. Recently, the QAM scheme is emerging as a new modulation scheme for a band-limited wireless system. In this paper, we propose an iterative decoding algorithm assuming QAM signal for a narrow-band mobile channel. The Algorithm is based on the EM(Expectation Maximization) Algorithm, and the performances of the proposed decoder are assessed using computer simulation. The simulation results show that the proposed decoder perform better compared to that of other schemes.

  • PDF

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Iris Segmentation and Recognition

  • Kim, Jae-Min;Cho, Seong-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • A new iris segmentation and recognition method is described. Combining a statistical classification and elastic boundary fitting, the iris is first segmented robustly and accurately. Once the iris is segmented, one-dimensional signals are computed in the iris and decomposed into multiple frequency bands. Each decomposed signal is approximated by a piecewise linear curve connecting a small set of node points. The node points represent features of each signal. The similarity measture between two iris images is the normalized cross-correlation coefficients between simplified signals.

Estimation of Mixture Numbers of GMM for Speaker Identification (화자 식별을 위한 GMM의 혼합 성분의 개수 추정)

  • Lee, Youn-Jeong;Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.237-245
    • /
    • 2004
  • In general, Gaussian mixture model(GMM) is used to estimate the speaker model for speaker identification. The parameter estimates of the GMM are obtained by using the expectation-maximization (EM) algorithm for the maximum likelihood(ML) estimation. However, if the number of mixtures isn't defined well in the GMM, those parameters are obtained inappropriately. The problem to find the number of components is significant to estimate the optimal parameter in mixture model. In this paper, to estimate the optimal number of mixtures, we propose the method that starts from the sufficient mixtures, after, the number is reduced by investigating the mutual information between mixtures for GMM. In result, we can estimate the optimal number of mixtures. The effectiveness of the proposed method is shown by the experiment using artificial data. Also, we performed the speaker identification applying the proposed method comparing with other approaches.

  • PDF

ECM and GLR Based Multiuser Detection with I-CSI

  • Maio Antonio De;Episcopo Roberto;Lops Marco
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • This paper deals with the problem of multiuser detection over a direct-sequence code-division multiple access (DS-CDMA) channel with incomplete channel state informations (I-CSI). We devise and assess two novel recursive detectors based on the expectation conditional maximization (ECM) algorithm and the generalized likelihood ratio (GLR) principle, respectively. Both receivers entail an affordable computational complexity. Moreover, the performance assessment, conducted via Monte Carlo techniques, shows that they achieve satisfactory performance levels and outperform linear detectors.

Rao-Blackwellized Particle Filtering for Sequential Speech Enhancement (Rao-Blackwellized particle filter를 이용한 순차적 음성 강조)

  • Park Sun-Ho;Choi Seun-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.151-153
    • /
    • 2006
  • we present a method of sequential speech enhancement, where we infer clean speech signal using a Rao-Blackwellized particle filter (RBPF), given a noise-contaminated observed signal. In contrast to Kalman filtering-based methods, we consider a non-Gaussian speech generative model that is based on the generalized auto-regressive (GAR) model. Model parameters are learned by a sequential Newton-Raphson expectation maximization (SNEM), incorporating the RBPF. Empirical comparison to Kalman filter, confirms the high performance of the proposed method.

  • PDF

Improved Kalman filter performance via EM algorithm (EM 알고리즘을 통한 칼만 필터의 성능 개선)

  • Kang, Jee-Hye;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2615-2617
    • /
    • 2003
  • The Kalman filter is a recursive Linear Estimator for the linear dynamic systems(LDS) affected by two different noises called process noise and measurement noise both of which are uncorrelated white. The Expectation Maximization(EM) algorithm is employed in this paper as a preprocessor to reinforce the effectiveness of Kalman estimator. Particularly, we focus on the relation between Kalman filter and EM algorithm in the LDS. In this paper, we propose a new algorithm to improve the performance on the parameter estimation via EM algorithm, which improves the overall process of Kalman filtering. Since Kalman filter algorithm not only needs the system parameters but also is very sensitive the initial state conditions, the initial conditions decided through EM turns out to be very effective. In experiments, the computer simulation results ate provided to demonstrate the superiority of the proposed algorithm.

  • PDF

Unsupervised Change Detection Using Iterative Mixture Density Estimation and Thresholding

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.402-404
    • /
    • 2003
  • We present two methods for the automatic selection of the threshold values in unsupervised change detection. Both methods consist of the same two procedures: 1) to determine the parameters of Gaussian mixtures from a difference image or ratio image, 2) to determine threshold values using the Bayesian rule for minimum error. In the first method, the Expectation-Maximization algorithm is applied for estimating the parameters of the Gaussian mixtures. The second method is based on the iterative thresholding that successively employs thresholding and estimation of the model parameters. The effectiveness and applicability of the methods proposed here are illustrated by an experiment on the multi-temporal KOMPAT-1 EOC images.

  • PDF

Cointegration Analysis with Mixed-Frequency Data of Quarterly GDP and Monthly Coincident Indicators

  • Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.925-932
    • /
    • 2012
  • The article introduces a method to estimate a cointegrated vector autoregressive model, using mixed-frequency data, in terms of a state-space representation of the vector error correction(VECM) of the model. The method directly estimates the parameters of the model, in a state-space form of its VECM representation, using the available data in its mixed-frequency form. Then it allows one to compute in-sample smoothed estimates and out-of-sample forecasts at their high-frequency intervals using the estimated model. The method is applied to a mixed-frequency data set that consists of the quarterly real gross domestic product and three monthly coincident indicators. The result shows that the method produces accurate smoothed and forecasted estimates in comparison to a method based on single-frequency data.

Comprehensive Cumulative Shock Common Cause Failure Models and Assessment of System Reliability (포괄적 누적 충격 공통원인고장 모형 및 시스템 신뢰도 평가)

  • Lim, Tae-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.320-328
    • /
    • 2011
  • This research proposes comprehensive models for analyzing common cause failures (CCF) due to cumulative shocks and to assess system reliability under the CCF. The proposed cumulative shock models are based on the binomial failure rate (BFR) model. Six kinds of models are proposed so as to explain diverse cumulative shock phenomena. The models are composed of the initial failure probability, shape parameter, and the total shock number. Some parameters of the proposed models can not be explicitly estimated, so we adopt the Expectation-maximization (EM) algorithm in order to obtain the maximum likelihood estimator (MLE) for the parameters. By estimating the parameters for the cumulative shock models, the system reliability with CCF can be assessed sequentially according to the number of cumulative shocks. The result can be utilizes in dynamic probabilistic safety assessment (PSA), aging studies, or risk management for nuclear power plants. Replacement or maintenance policies can also be developed based on the proposed model.