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e <
we present a method of sequential speech enhancement, where we infer clean speech signal
using a Rao-Blackwellized particle filter (RBPF), given a noise—contaminated observed signal. In
contrast to Kalman filtering—-based methods, we consider a non-Gaussian speech generative model
that is based on the generalized auto-regressive (GAR) model. Mode! parameters are learned by a
sequential Newton—Raphson expectation maximization (SNEM), incorporating the RBPF. Empirical
comparison to Kalman filter, confirms the high performance of the proposed method.

1.Hd 8
Speech enhancement is a fundamental problem, which
aims at estimating clean speech, given

noise-contaminated signals. Various speech enhancement
methods have been developed. Specially in this paper, we
consider the sequential speech enhancement algorithm.

In this paper, we consider the generalized
auto-regressive (GAR) mode! for clean speech, in order to
accommodate the non-Gaussian characteristics of speech.
With the GAR model, we formulate the speech
enhancement problem as a Rao-Blackwellized particie
filtering. Associated model parameters are learned by a
sequential Newton—-Raphson expectation maximization
(SNEM) method. Empirical comparison to the Kalman filter,
confirms that the proposed method based on the
Rao-Blackwellized particle fitler, is superior to alman filter,
in the task of sequential speech enhancement.

2. Generalized Auto—Regressive Model

The auto-regressive (AR} model is a widely-used linear
modelling method, where the current value of a time
series, s,, is expressed as a linear sum of its past

values, {s._4}, and an innovation »,:

5 = ﬁadst_d+vt. (M
d=1

The AR modelling involves determining coefficients {ay,}
that provide a linear optimal fitting to given time series
{st}, assuming that the innovation v, is Gaussian.

The generalized auto-regressive (GAR) modsel is a
non-Gaussian extension of the AR model, which adopts
the same linear model (1} but assumes the innovation v,
is drawn from the generalized exponential (GE) distribution
(a.k.a. generalized Gaussian) with mean zero [1] that is
of the form
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p(v;R,B8)= mexx){—ﬁlvl }s
where 1/8 determine width of the density and R is a
parameter which determines a shape of distribution.
The GE distribution accommodates a wide class of
unimodal probability distribution. For example, p(v;R,3)
becomes Gaussian distribution for R=2 and Laplacian
distribution for R=1. The -GAR model reflects the
non—-Gaussian characteristics of speech signals. However,
in such a model, the probabilistic
inference is intractable, in contrast to Kalman filters. This
leads us to consider the Rao-Blackwellised Particle Filter
described in Sec. 4.

3. State—-Space Models
The noise-contaminated observed signal y, is modelied

as a linear sum of clean speech s, and noise n,:

Y, =8, +ny, (1)
where the clean speech and noise follow GAR and AR
models, respectively, i.e.,

sy = f: g8y — gt U, (2-3)
d=1

n, = ﬁ:"/dnt—d_’_uta
=1

where v, obeys the generalized exponential distribution
and wu, is drawn from Gaussian distribution. We assume
that s, and n, are statistically independent.
We define s,ER? and n,ER? as

8= [st,st—17"'7st—p+1]T= ng= [nc,nt—lv"'vnt—q+1]T-

Concatenating these two vectors, we define a state vector



2006 FZAFEIZ N =EF Vol 33, No. 1(B)

z,= [s; 0y |7 € R4 Accommodating generative models
(2) and (3) for speech and noise, the state-space model
that we consider, is of the form:

x,= Ax,_,+ Br,,

Ye = bTxt»

e[ )a- ]
re=[vou]”, bT=[07 ]

where

and
b,=[1,0,..,0] ERP,.

b,=[1,0,...,0)T €R%
The state transition matrix 4 € R®T9*®*9 s a block
diagonal matrix where 4, is given by

o az... ap
100

A= 01

0 0 1 0
and A_is constructed in a similar way.

4. Formulation with Rao-Blackwellised Particle Filter
The posterior density of the hidden state can be
decomposed as [2]
P(‘Fo::'?h::)=P("o:t|50:uy1:z)P(so:Jyl:t)v (4)
leads us
separately.

The posterior density of the noise, p(ng.lsg:s:¥1:¢).

which to estimate the speech and noise

can be analytically computed using the Kalman filter, if we
know the marginal posterior density p(sp..ly;..). Only the
posterior density of speech, p(so:tly,:t), is approximately
calculated through a sampling method. This method,
motivated by the decomposition (4), is known as RBPF.
Next section illustrates the details on the inference.

5. Inference
5.1 Inference for the state of noise
Let s(') (1=1,2,---,N) be particles of clean speech and

o be the variance of u,in the noise AR model. We

sample sﬁ’) by the method described in Sec. 5.2 and then

propagate the mean (‘) and covariance Z‘(‘) of n, with a

Kalman filter as follows:

0y _ )

‘lt 1p—1 = A-nlltt__j it —

=9 = A3, L_lA + o2b, b, .
r = b bn,

6] T, (0 ()

Ypr-1 = Onbyy_ 1+b 8t
By {1} () {4} (1)
T =X, 1bal T, ] (Yt = Yy )
Gy _ {1) (i) rrid) (1)

ztir - Eu 1 Elst 1b“irz ] b Eu 1

Finally the predictive density [2] is given by
Yy i—1:80:0) = N(yz'aytit—lvrt)-

5.2 Inference for the state of clean speech
For approximately estimating p(sq.,ly:.,). we update the
importance weights given by [2]

( N
(D (s, )!‘31—1

(4}
wy X Uy _(‘T,T‘T,)—P('/t'9():f,~1e1/1:t-1)-
841)

where i)(stls,_l) is Gaussian-approximation allowing us to

drawing new samples from Gaussian and

I;(ytlaozt—v?h::—l) is given by
Py 80—1.Y1:0—1)

= [ p(ye|80:4, ¥1:0—1)P(S¢]82—1)d5e.
From evaluation of the sequential importance weights,

we can sequential estimate p(sg,,ly;.,) within the RBPF.

6. Parameter Learning
Parameters to be leamed, are 0= {a,B,7,0°}. where
a=[a;,~,a,)'" is the set of speech GAR model

B is the parameter determining the
density in (2),

coefficients in
width of the

= ['717"'7'711]T
in (3), and ois the varlance of e,in the noise AR model

(3).

In this section, we obtain prameter updating rule by a
sequential Newton expectation maximization (SNEM) [3,4]
allgorithm using the approximated posterior distribution of

generalized exponential

is the set of noise AR model coefficients

Gevr = 6+ H (O,

H,oow = XMH,+ H(8),
hidden variables determined by the RBPF.
where 9, is a solution of parameter at time t, ¢ and H
are given by

@(fe) E{Vs, logp(s; 0¢)|yr:e. 1}

. 2 L . . . -~ .

H,) = —IE{V(,,, log p(x,: 9()'!/1:&8!.—1,}"

The above equation need the expectation of given function
with posterior density p(zly;.,). This expectation is
approximately estimated by using the RBPF. From updating
rule for parameters, we recursively update parameters for

both speech and noise model.
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We denote that RBPF+SNEM is combining the RBPF and
SNEM. In addition, RBPF+QNEM is combining the RBPF
and Quasi-Newton EM which is reduced version of
SNEM. Also we estimate posterior density p(z,.,ly;..) by
Kalman filter in the assumption that density of speech is
Gaussian. In this case, we denote Kalman+SNEM
algorithm. Although the Kalman+SNEM does not consider
non—-Gaussianity of speech, it show the better stability

than  Kalman-gradient-descent-sequential (KGDS) which
updates parameters sequentially using gradient type
method [41.

7. Experimental Result

For experiments, we use a speech signal from web site
(http://www.ece.mcmaster.ca/~reilly/htmli/projects/dereverb/
speechRHINTE.wav). It is re-sampled 8 Khz and first
5000 data oints are experiment. In the
experiment, we compare our algorithm to the existing
sequential speech algorithm which assume hat the density
of speech is Gaussian.

At first, we set the order of speech model to 12 which is
generally used for speech modelling, i.e., p of the GAR
model is 12. Next, to measure performance of given
speech enhancement algorithm, we use an improvements
of signal to noise ratio (SNR) between input and output
signal. We obtain the output SNR averaging
independent 30 simutation for each experiment. we set the
number of particles N to 200 and R of the GE density to
1.25 for the RBPF. Finally we set g of noise model to 5
and assume that this noise model is unknown and
stationary.

used for

from

Now, we compare our algorithm to the existing sequential
speech enhancement methods. We calculate the output
SNR for different condition where input SNR is changed
from 0db to 10db.

From figure 1, we found that our methods outperform to
the Kalman filter based method. Specially our proposed
methods give the high performance when input SNR is
above 5db. Since the observation is closer to speech
signal in the high input SNR condition, the density of it is
more different from Gaussian density. Hence, in this case.
our method using the GE density is more appropriate than
the Kaman filter based method. From above result, we
conclude that that our methods using GE density
outperform to the existing method based Gaussian density.

8. Conclusions
We proposed a new sequential speech enhancement
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algorithm combining the GAR madel and the RBPF. We
used the GAR model as the peech model and the RBPF
Because the GAR model can deal
with more general density than Gaussian, we can choose
the density proper to real speech signal. Thersfore, the
estimated result is more close to the true speech signal.
algorithm can be extended to source
separation. In this case, two GAR models correspond two
speech signals. From this assumption, our sequential
updating algorithm in the Sec. 6 can find the parameters
of two speech signals sequential_li.

as an inference tool.

In future, our
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