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ABSTRACT

 The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when 

compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy 

speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition 

framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, 

we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. 

We derived a novel mathematical relation between the train and the test noisy speech feature vector in the 

log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM 

algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The 

proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the 

relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.  

Keywords : noisy speech recognition, MTR, Expectation-Maximization, VTS

I. Introduction

 Despite many technical advances, accurate speech 

recognition in noisy environments still remains a difficult 

problem. The techniques cannot fully overcome the 

performance degradation caused by channel and additive 

noise. Broadly categorized, there are two different 

approaches used to improve the performance in noisy 

speech recognition. In one of the approaches, noise-robust 

feature extraction, speech enhancement, feature and 

model parameter compensation approaches are used 

independently or in combination with each other to 

improve the performance of speech recognition under 

noisy environments[1],[2],[3]. In particular, compensation 

based on the Vector Taylor Series (VTS) has been known 

to perform quite well in noisy conditions [4],[5]. 

In another approach, noisy speech was directly used to 

produce noise-adapted hidden Markov Models (HMMs) 

during training. The Multi-condition TRaining (MTR) [6]and

 Multi-Model-based Speech Recognition framework (MMSR)  

[7],[8] are representatives of this approach.
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 The environment-dependent HMMs make it possible to 

cope with test noisy speech without any compensation 

algorithm. In the MTR method, noisy speech signals under 

various noise conditions are collected and used for training 

the HMM. The MMSR was recently proposed to improve 

the sharpness of probability density functions in acoustic 

models of the MTR, and successful results using the 

MMSR were demonstrated [7],[8],[9]. In contrast to the 

MTR, where a single HMM set is constructed, multiple 

HMM sets corresponding to various noise types and 

signal-to-noise ratio (SNR) values are produced during 

training, and a single HMM set which is closest to test 

noisy speech among multiple HMM sets is selected for 

recognition.

 Although the noise-adapted HMM performs rather well by 

itself, its performance would be improved further by 

applying compensation. In a previous study, a novel 

mathematical relation between test and training noisy 

speech was derived in the log-spectrum domain [9]. After 

approximating the relation using the VTS, the performance 

of the noise-adapted HMM could be improved by 

compensating the feature vectors of the test noisy 

speech. The Minimum Mean Square Error (MMSE) 

estimation of training noisy speech (not clean speech) 

conditioned on the test noisy speech was used for 

recognition instead of the test noisy speech, which could 
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reduce the mismatch between the test noisy speech and 

the acoustic models of the noise-adapted HMM. However, 

in the previous study, the channel noise was not 

considered in the compensation, which probably had a 

negative effect on improving the performance on Set C 

of the Aurora 2 database. In this study, the previous 

algorithm was modified to compensate the test noisy 

speech considering both the channel and additive noise. 

The detailed mathematical formulation is derived, and the 

MTR as well as the MMSR are used for producing the 

noise-adapted HMM.

 This paper is organized as follows. A review on the MTR 

and the MMSR is presented in Section 2, and 

compensation of the test noisy speech based on the 

noise-adapted HMM is described in Section 3. The 

experimental procedure and results are presented and 

discussed in Section 4. Finally, conclusions are given in 

Section 5.

II. A Review on Noise Adapted HMMs

 In this study, both the MTR and MMSR are used to 

produce the noise-adapted HMM. Although the MMSR is 

known to have advantages over the MTR method [7],[8], 

it is rather controversial regarding which method is better 

in performance for noisy speech recognition. Both will be 

used to find the more appropriate method in the proposed 

feature-compensation method.

 In the MTR, a collection of clean and noisy speech 

signals with various noise types (Subway, Babble, Car, 

Exhibition) and SNR values (0, 5, 10, 15, 20 dB) is used to 

construct a single set of noise-adapted HMM. In the 

MMSR, multiple HMM sets are constructed, and each of 

them corresponds to a different noise type (Subway, 

Babble, Car, Exhibition) and SNR value (0-30 dB in 2-dB 

intervals). A single HMM set which is closest to the test 

noisy speech is selected for recognition based on the 

estimated SNR value and noise type of the test speech. 

Since the MTR method combines a number of noise 

conditions to train a single HMM set, it tends to reduce 

the phonetic sharpness of the acoustic models in their 

probability density functions of the HMM. The MMSR 

method can overcome the weakness of the MTR by 

choosing a specific single HMM set which is most 

appropriate to the test noisy speech. However, the errors 

in selecting the closest HMM set will incur misrecognition, 

causing performance degradation in the MMSR.

Fig .1. Block diagram of the proposed feature 

compensation method.

Ⅲ. Feature Compensation

 For the test noisy speech feature compensation based on 

noise-adapted HMM, the relation between training and test 

noisy speech is first derived in log-spectrum domain. Since 

the relation is non-linear, it is approximated using the 

VTS to obtain the mean vectors and covariance matrices 

of the test noisy speech given the statistics of training 

noisy speech obtained during the training. The statistics of 

the test noisy speech are used to estimate MMSE of the 

training noisy speech, which is used as a feature vector 

for recognition after Discrete Cosine Transformation 

(DCT). The block diagram of the whole process is shown 

in Fig. 1. A more detailed explanation of this process is 

given in the next subsections.

A. Relation between Test and Train Noisy Speech 

 Log-spectrum vector  of the clean speech and  of 

the noisy speech are usually assumed to be related as 

follows: 

   logexp           (1)
where  and  are the log-spectrum vector of additive 

and convolution noise, respectively, and  is a unity 

vector. Based on (1), the log-spectrum vector of the test 

noisy speech  and the training noisy speech   can be 

expressed as follows, assuming that there is no channel noise 

in the training noisy speech for the convenience of analysis:

                     (2)

                     (3) 

   logexp          (4)    
     

              logexp        (5)
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where  and   represent the additive noise contained 

in the test and training noisy speech, respectively.  

should be determined during training, and  is estimated 

using test noisy speech in recognition.

By combining (2) and (3), the test noisy speech can be 

expressed in terms of the training noisy speech as follows:

      

      

   logexp exp  

(6)

B. Statistics of Test Noisy Speech 

 From (6), the mean and covariance of the test noisy 

speech can be estimated. Equation (6) is expanded using 

the first-order VTS around the initial value   of   

and the mean of the training noisy speech    

to obtain the following equation. 

      

∇
      

∇    

∇    

(7)

Using (7), the mean  and covariance  of the test 

noisy speech can be expressed from the mean  and 

covariance  of the training noisy speech as follows:

      

∇    

∇    

           (8)

  ∇
    

· ∇
    



∇        


(9)

C. Estimation of Noise Parameter 

 Assuming also that the log-spectrum vector  of the test 

noisy speech is a mixture of Gaussian distributions, the 

distribution of  as a function of unknown noise vector  

,  can be defined using (8) and (9),

    




            (10)

 where         is the m-th Gaussian 

distribution with a mean vector  and covariance 

matrix .  is the mixture weight of the m-th 

component. Note that the mean vector  and 

covariance matrix  are themselves fully parameterized 

by the noise vectors  and , which are treated just as 

parameters, not random variables; only the noisy speech 

vectors were treated as random variables.

Given a sequence of log-spectrum vectors for the test 

noisy speech, the log-likelihood for the sequence is 

defined as follows using (10):

    
  

 log             (11)

An iterative Expectation Maximization (EM) algorithm is 

used to re-estimate the noise vector maximizing (11). In 

the EM algorithm, an auxiliary function  is written 

as follows:

 


  








 log 
(12)

The symbol  represents the noise vector , which is 

already known and  is the unknown noise vector  , 

which should be estimated. To re-estimate  in (12), 

the derivative of the auxiliary function with respect to 

 must be taken and set equal to 0.

The noise vector   derived is substituted into  in 

(8) and (9) to adapt the mean and covariance of the test 

noisy speech. The likelihood function from (11) and the 

auxiliary function from (12) are consequently updated. This 

process is iterated until the log-likelihood function from 

(11) converges. After the convergence, an MMSE 

estimation of the training noisy speech is performed and 

used for recognition.

D. MMSE of Training Noisy Speech

 The MMSE of training speech  given the test speech 

 is expressed as follows:

      

  (13)

From (6),

                              (14)

       

Substituting (14) into (13) and approximating 

    by the VTS of order zero around , 

the following relationship is obtained:
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 C1  C2  …  C12  E △C1 △C2  … △C12 △E ∆ C1 ∆ C2  … ∆ C12 ∆ E

Fig .2. The arrangement of the feature vector used in the experiments. 

( : i-th cepstrum coefficient, E: log-energy, ∆ ,∆ : delta coefficient, 
∆   ,∆  : acceleration coefficient)

  ≅ 




       
  (15)

The DCT of the log-spectrum vector    is taken to 

find a 13-th order cepstrum vector.  The 0-th component 

in the cepstrum vector is replaced with log-energy. The 

delta and acceleration(delta-delta) coefficients of the 

cepstrum vector are also calculated to obtain a 

39-dimentional feature vector which is used for the 

speech recognition experiments described in the next 

section.

IV. Experimental Results

 To verify the effectiveness of the proposed feature 
compensation method, experiments were conducted on the 
Aurora 2 database. There are two sets of training data, 
each corresponding to clean training (CLEAN) and 
multi-condition training (MTR). Each consists of 8,440 
sentences of approximately 3~5 s in duration. The MTR 
set consists of both clean and noisy speech signal that is 
artificially contaminated by various kinds (subway, car, 
exhibition, babble) of noise with SNR ranges from 0 to 20 
dB in 5-dB intervals.
 Recognition experiments were conducted on 3 test sets 

(sets A, B, C) that are corrupted by a range of noise 

types with a SNR range of 0, 5, 10, 15, 20 dB. For each 

noise type and SNR value, there are 1,001 sentences for 

recognition. Set A and set B are corrupted by an additive 

noise distortion alone, and set C is corrupted by a 

combination of convolution noise and additive noise.

 For the feature vector, a noise-robust version of 

Mel-Frequency Cepstral Coefficients (MFCCs) called AFE 

(Advanced Front-End) was used. AFE is known to 

significantly reduce the word error rates in noisy speech 

recognition [10]. The 12-th order MFCCs with the 0-th 

order cepstral coefficient set aside are appended with the 

log-energy to form a 13-th order basic feature vector 

along with their delta and acceleration coefficients to 

construct a 39-th order feature vector for each frame. 

The feature vector for each frame is arranged as in Fig. 

2.The acoustic models were trained using both the 

Complex Back End (CBE) and Simple Back End (SBE) 

scripts, which are each separately defined for the Aurora 

2 database. For the SBE model, the HMM for each digit 

consists of 16 states with 3 Gaussian mixtures in each 

state. In addition, a three-state silence model with 6 

Gaussian mixtures per state and a one-state pause model 

tied with the center state of the silence model are used. 

For the CBE, the number of mixtures in each state is 

increased to 20 and 36 for the digit and silence models, 

respectively. The hidden Markov model toolkit (HTK) was 

employed to train and test the HMM used in this study 

[11]. 

 Table 1 shows the word error rates (WERs) of the proposed 

feature compensation methods (MTR-MMSE/MMSR-MMSE) in 

comparison with the conventional methods for the Aurora 

2 database. The MTR-MMSE and the MMSR-MMSE differ 

in the type of noise-adapted HMM used for recognition. 

The average WER (Ave.) in the last column is calculated 

by summing the weighted WERs for Set A, Set B and Set 

C. The weighting factors are 0.4 for Set A and Set B and 

0.2 for Set C since the number of test utterances for Set 

A and Set B is twice as many as that  in Set C.

As expected, both the MTR and MMSR method improve 

the performance of the baseline system, which was 

trained using clean speech data. The baseline system 

scores 12.97% WER on average, whereas the MTR and 

MMSR achieve WERs of 8.22 % and 8.17%, respectively. 

Although the MMSR performs slightly better than the 

MTR, their difference is not so significant. The VTS 

method based on the clean speech HMM improves the 

performance of the baseline system but is quite inferior 

to the MTR and MMSR. This demonstrates the superiority 

of the multi-style training approaches.

 By using the proposed feature compensation, the 

performance of the MTR and the MMSR methods could be 

improved further. As shown in Table 1, the MTR-MMSE 

and the MMSR-MMSE achieve 7.81% and 7.80% average 

WERs, providing 4.98% and 4.52% relative word error rate 

improvement over the MTR and the MMSR, respectively. 

The relative word error rate is computed by dividing the 

WER difference of the two methods with the WER of the 

reference method.

 The MTR-MMSE and the MMSR-MMSE were also applied 

to the noise-adapted HMM trained with the CBE script to 

verify whether the proposed method could work as in the 

SBE script. We could observe similar performance trend 

as in the SBE script. The result is shown in Table 2 in 

comparison with other conventional approaches.
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Method Set A Set B Set C Ave.

Baseline 12.25 12.90 14.56 12.97

VTS 12.01 12.37 13.87 12.52

MTR 7.70 8.23 9.26 8.22

MMSR 6.78 9.56 8.17 8.17

MTR-MMSE 7.54 7.75 8.45 7.81

MMSR-MMSE 6.71 8.98 7.60 7.80

Table 1. WER (%) of MTR-MMSE/MMSR-MMSE using 

SBE models compared to conventional methods for 

Aurora 2 database.

Compared with the results in Table 1, consistent 

performance improvement can be observed with the CBE 

script, and it is most prominent in the MTR. The 

increased number of mixtures in each state of the HMM 

may have greatly contributed to sharpening the acoustic 

modeling in the MTR. Although the MMSR had comparable 

performance with the MTR in the SBE script, the MTR 

significantly outperforms the MMSR in the CBE script.

Method Set A Set B Set C Ave.

Baseline 11.58 12.10 13.68 12.20

VTS 11.42 11.49 12.83 11.73

MTR 6.04 6.82 7.22 6.59

MMSR 6.17 9.0 7.97 7.66

MTR-MMSE 5.9 6.33 6.37 6.16

MMSR-MMSE 5.86 8.17 7.51 7.11

Table 2. WERs (%) of MTR-MMSE/MMSR-MMSE 

using CBE models compared to conventional 

methods for Aurora 2 database.

V. Conclusions

 In this study, we proposed a VTS-based feature 

compensation method using noise-adapted HMMs. The 

approach is distinguished from the conventional VTS-based 

methods where the clean speech HMM is used instead of 

the noisy speech HMM. The MTR and MMSR were used to 

train the noise-adapted HMM, and the speech recognition 

performance could be significantly improved by employing 

the proposed feature compensation. The proposed 

algorithm was  applied to HMMs trained with the CBE 

script as well as the SBE script to test the robustness of 

the  method and we could find improved performance in 

both of them. The best result (6.16% average WER) was 

obtained when the feature compensation was applied to 

the MTR in the CBE script, resulting in 6.5% relative 

improvement in WER over the conventional MTR method.
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