• Title/Summary/Keyword: Expectation and Maximization

Search Result 215, Processing Time 0.03 seconds

Augmentation of Hidden Markov Chain for Complex Sequential Data in Context

  • Sin, Bong-Kee
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.31-34
    • /
    • 2021
  • The classical HMM is defined by a parameter triple �� = (��, A, B), where each parameter represents a collection of probability distributions: initial state, state transition and output distributions in order. This paper proposes a new stationary parameter e = (e1, e2, …, eN) where N is the number of states and et = P(|xt = i, y) for describing how an input pattern y ends in state xt = i at time t followed by nothing. It is often said that all is well that ends well. We argue here that all should end well. The paper sets the framework for the theory and presents an efficient inference and training algorithms based on dynamic programming and expectation-maximization. The proposed model is applicable to analyzing any sequential data with two or more finite segmental patterns are concatenated, each forming a context to its neighbors. Experiments on online Hangul handwriting characters have proven the effect of the proposed augmentation in terms of highly intuitive segmentation as well as recognition performance and 13.2% error rate reduction.

Analysis of Incomplete Data with Nonignorable Missing Values

  • Kim, Hyun-Jeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • In the case of "nonignorable missing data", it is necessary to assume a model dealing with the missing on each situations. In this article, for example, we sometimes meet situations where data set are income amounts in a survey of individuals and assume a model as the values are the larger, a missing data probability is the higher. The method is to maximize using the EM(Expectation and Maximization) algorithm based on the (missing data) mechanism that creates missing data of the case of exponential distribution. The method started from any initial values, and converged in a few iterations. We changed the missing data probability and the artificial data size to show the estimated accuracy. Then we discuss the properties of estimates.

  • PDF

고장 보고율을 이용한 현장 수명자료 분포의 모수추정

  • Park, Tae-Ung;Kim, Yeong-Bok;Lee, Chang-Hun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.678-685
    • /
    • 2005
  • Estimating parameters of the lifetime distribution is investigated when field failure data are not completely reported. To take into account the reality and the accuracy of the estimates in such a case, the failure reporting probability is incorporated in estimating parameters. Firstly, method of maximum likelihood estimate(MLE) is used to estimate parameters of the lifetime distribution when failure reporting probability is known. Secondly, Expectation and Maximization(EM) algorithm is used to estimate the failure reporting probability and parameters of the lifetime distribution simultaneously when failure reporting probability is unknown. For both case, procedures of estimation are illustrated for single Weibull distribution and mixed Weibull distribution. Simulation results show that MLE obtained by the proposed method is more accurate than the conventional MLE.

  • PDF

CT HEAD IMAGES SEGMENTATION USING UNSUPERVISED TECHNIQUES

  • Lee, Tong Hau;Fauzi, Mohammad Faizal Ahmad;Komiya, Ryoichi;Hu, Ng
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.217-222
    • /
    • 2009
  • In this paper, a new approach is proposed for the segmentation of Computed Tomography (CT) head images. The approach consists of two-stage segmentation with each stage contains two different segmentation techniques. The ultimate aim is to segment the CT head images into three classes which are abnormalities, cerebrospinal fluid (CSF) and brain matter. For the first stage segmentation, k-means and fuzzy c-means (FCM) segmentation are implemented in order to acquire the abnormalities. Whereas for the second stage segmentation, modified FCM with population-diameter independent (PDI) and expectation-maximization (EM) segmentation are adopted to obtain the CSF and brain matter. The experimental results have demonstrated that the proposed system is feasible and achieve satisfactory results.

  • PDF

ECM and GLR Based Multiuser Detection with I-CSI

  • Maio Antonio De;Episcopo Roberto;Lops Marco
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • This paper deals with the problem of multiuser detection over a direct-sequence code-division multiple access (DS-CDMA) channel with incomplete channel state informations (I-CSI). We devise and assess two novel recursive detectors based on the expectation conditional maximization (ECM) algorithm and the generalized likelihood ratio (GLR) principle, respectively. Both receivers entail an affordable computational complexity. Moreover, the performance assessment, conducted via Monte Carlo techniques, shows that they achieve satisfactory performance levels and outperform linear detectors.

Variational Bayesian inference for binary image restoration using Ising model

  • Jang, Moonsoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method with the Ising model. The observation and the latent variable are the degraded image and the original image, respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt the variational technique. When the image is restored, the iterative method is used to solve the recursive problem. Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).

A Cluster modeling using New Convergence properties (새로운 수렴특성을 이용한 클러스터 모델링)

  • Kim, Sung-Suk;Baek, Chan-Soo;Kim, Sung-Soo;Ryu, Joeng-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.382-384
    • /
    • 2004
  • In this parer, we propose a clustering that perform algorithm using new convergence properties. For detection and optimization of cluster, we use to similarity measure with cumulative probability and to inference the its parameters with MLE. A merits of using the cumulative probability in our method is very effectiveness that robust to noise or unnecessary data for inference the parameters. And we adopt similarity threshold to converge the number of cluster that is enable to past convergence and delete the other influence for this learning algorithm. In the simulation, we show effectiveness of our algorithm for convergence and optimization of cluster in riven data set.

  • PDF

A Study on the Unsupervised Change Detection for Hyperspectral Data Using Similarity Measure Techniques (화소간 유사도 측정 기법을 이용한 하이퍼스펙트럴 데이터의 무감독 변화탐지에 관한 연구)

  • Kim Dae-Sung;Kim Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.243-248
    • /
    • 2006
  • In this paper, we propose the unsupervised change detection algorithm that apply the similarity measure techniques to the hyperspectral image. The general similarity measures including euclidean distance and spectral angle were compared. The spectral similarity scale algorithm for reducing the problems of those techniques was studied and tested with Hyperion data. The thresholds for detecting the change area were estimated through EM(Expectation-Maximization) algorithm. The experimental result shows that the similarity measure techniques and EM algorithm can be applied effectively for the unsupervised change detection of the hyperspectral data.

  • PDF

New Data Extraction Method using the Difference in Speaker Recognition (화자인식에서 차분을 이용한 새로운 데이터 추출 방법)

  • Seo, Chang-Woo;Ko, Hee-Ae;Lim, Yong-Hwan;Choi, Min-Jung;Lee, Youn-Jeong
    • Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.7-15
    • /
    • 2008
  • This paper proposes the method to extract new feature vectors using the difference between the cepstrum for static characteristics and delta cepstrum for dynamic characteristics in speaker recognition (SR). The difference vector (DV) which it proposes from this paper is containing the static and the dynamic characteristics simultaneously at the intermediate characteristic vector which uses the deference between the static and the dynamic characteristics and as the characteristic vector which is new there is a possibility of doing. Compared to the conventional method, the proposed method can achieve new feature vector without increasing of new parameter, but only need the calculation process for the difference between the cepstrum and delta cepstrum. Experimental results show that the proposed method has a good performance more than 2.03%, on average, compared with conventional method in speaker identification (SI).

  • PDF

The Algorithm Development of Aging Diagnosis Using Swarm Optimization (군집 최적화를 이용한 열화 진단 알고리즘 개발)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • In this paper, properties of pattern using LBG (Linde-Buzo-Gray) Algorithm was explored including the exactness of K-means algorithm and process time of EM (Expectation Maximization) algorithm in order to develop analysis algorithm of partial discharge pattern in a cable using acoustic data analysis system. Partial discharge was measured by generating inner fault due to lamination of XLPE which is used for cable insulation material. Discharge pattern was analysed by changing the number of swarm article to 2, 4, and 6 in order to interpret swarm structure and properties.