• 제목/요약/키워드: Exhaust valve

검색결과 265건 처리시간 0.025초

CVVT 제어를 이용한 차량 음질 개발 (Development of Sound Quality for a Vehicle by Controlling CVVT)

  • 김영기;조덕형;김재헌;강구태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.622-625
    • /
    • 2007
  • For optimizing the performance of SI engine such as engine torque, fuel consumption, and emissions, systems for variable valve timing were developed by many automotive researchers. In this work, we investigated the relationship between valve timing and intake orifice noise to improve the NVH (Noise, Vibration and Harshness) performance as well as engine torque and power. Two approaches are conducted, which are engine dynamometer testing and 1-D simulation analysis. Experimental data were measured on about 21 different operating conditions. This experiment shows that the intake and exhaust valve timing related to overlap period influence on the NVH performance, especially intake orifice noise of engine at given range of operation conditions. Similar results are achieved by using 1-D simulation analysis. It is concluded that the optimal strategies of controlling valve timing and tuning intake systems, are necessary to develop engines or vehicles with good sound quality.

  • PDF

혼합기 오존 첨가에 따른 SI기관의 배기배출물 특성 (Exhaust Emissions Characteristics on the SI Engine according to the Air-Fuel Mixture with Ozone)

  • 이병호;이중섭;이용훈;이찬규;정효민;정한식
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.5-10
    • /
    • 2006
  • In a conventional and lean operating engine, the state of mixture is very important in the combustion and emission characteristics. Lean operation is known to decrease the formation while maintaining a good fuel economy, but the unstable operation due to misfire and erratic combustion prevents engines from being operated at very lean mixtures, so both combustion rates and exhaust emission formation need to be satisfied comparably. In this study, it is designed and experimented the modified engine, and analyzed the combustion and exhaust emission according to the change of engine speed and with adding ozone. The conclusions were drawn out and enumerated as follows. 1. At the experimental result of automobile diesel engine, it has been verified that the formation of particulate matter(PM) gas is able to be lower with the addition of optimum quantities of ozone. 2. Carbon monoxide(CO) was formed by the lack of oxygen and the thermal dissociation in the combustion process. Therefore, with the change of swirl valve's position and addition of oxygen and ozone, CO formation was decreased by the increasing of excessive O2, but it was increased by the temperature of combustion gas growing higher. As a result of the two effects, CO formation was decreased in this study. 3. Hydrocarbon(HC) was formed by the lack of O2, and the flow of mixture in cylinder. According to opening of the swirl valve and adding the oxygen and ozone, hydrocarbon gas was decreased by 20%, 9%, and 27.5%, respectively. 4. Nitric oxides($NO_x$) was strongly affected by the combustion gas temperature. As a result of respectively experimental conditions, $NO_x$ formation was increased about 20% due to (be the) high(er) combustion gas temperature.

  • PDF

상용 CRDI 디젤기관에서 바이오디젤유 20% 적용시 내구시험에 따른 배기배출물 특성 (The Characteristics of Exhaust Emissions by Durability Test with Biodiesel Fuel (20%) in a Commercial CRDI Diesel Engine)

  • 최승훈;오영택
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.379-383
    • /
    • 2008
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 1.9%), smoke (below 4.1%), NOx (below 3.7%) and durability characteristics in spite of operation of 150 hours run with BDF 20%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.19% at $100^{\circ}C$.

대형디젤기관에서 EGR에 의한 배출가스 연구 (A Exhaust Gas Study by EGR in Heavy-Duty Diesel Engine)

  • 한영출;류정호;오용석;이현우;강호인
    • 한국대기환경학회지
    • /
    • 제16권3호
    • /
    • pp.285-291
    • /
    • 2000
  • EGR(Exhaust Gas Recirculation) is known as the technique reducing the NOx emissions from diesel engine. Low pressure roote and high pressure roote are applied for heavy-duty diesel engine are. In this study, as research for the heavy duty diesel engine equipped with EGR, reduction characteristic of CO, THC, NOx, and PM in HD diesel engines are investigated by applying EGR device. Also, through the experiments using 11 liters, turbocharged diesel engine with EGR valve and intercooler, exhaust gas reduction characteristics were measured as changing in EGR rate according to D-13 mode.

  • PDF

Uni-flow 소기방식 2행정 프리피스톤 수소기관의 스트로크변화에 따른 역화 특성 (The Characteristics of Backfire for 2 stroke Free-Piston Hydrogen Fueled Engine with Uni-flow Scavenging)

  • 조관연;조형욱;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권5호
    • /
    • pp.371-377
    • /
    • 2009
  • Backfire characteristics for hydrogen fueled free piston engine with uni-flow scavenging is investigated with different stroke, exhaust vlave openning timing and fuel-air equivalence ratio by using RICEM (Rapid Intake Compression Expansion Machine) for combustion research of free piston engine. As results, it is found that backfire can be occurred due to slow combustion of unhomogeneous mixture in the piston crevice volume or/and in the cylinder near piston head. And the more stroke of free piston H2 engine with uni-flow scavenging is short the more opening timing of exhaust valve have to be advanced to control backfire.

배기 가스 유량 제어를 이용한 버너방식 디젤 입자상물질 제거 장치의 재생 (Regeneration of Burner Type Diesel Particulate Trap System Through Active Exhaust Gas Feeding)

  • 김재업;박동선;이만복;김응서
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 1997
  • The key point that guarantees the durability of the ceramic monolith filter is to lower peak temperature and temperature gradient inside filter during regeneration. The control of the exhaust gas flow rate into the filter, by the bypass technique of the exhaust gas, enables the gas temperature in filter to be constant for regeneration. A couple of methods, which are the ON/OFF and PID control of the bypass valve, were used for feedback control of the gas temperature. These techniques showed that the ceramic filter was regenerated perfectly under the peak temperature and peak temperature gradient limitations for durability.

  • PDF

수소기관에서 NOx 특성에 관한 연구(2) (The Study on NOx Emission for Hydrogen Fueled Engine(2))

  • 최경호
    • 한국수소및신에너지학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2000
  • The goals of this research are to understand the $NO_x$ emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 percent basis heating value of the total fuel. The effects of exhaust gas recirculation(EGR) on $NO_x$ emission were studied. The exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: (i) the tested engine was run without backfire under 70 percent hydrogen fuel supplemented; (ii) the peak cylinder pressure was decreased with increase of EGR ratio due to the decrease of oxygen concentration in an intake pipe; and (iii) $NO_x$ emission was decreased by 77% with 30% EGR ratio. Therefore, it may be concluded that EGR is effective method to lower $NO_x$ emission in hydrogen fueled diesel engine.

  • PDF

가솔린 기관의 시동시 연료분사스킵이 유해배출가스 저감에 미치는 영향 (The Effects of Fuel Injection Skips on the Reduction of Harmful Exhaust Gases during an SI Engine Starting)

  • 김성수
    • 동력기계공학회지
    • /
    • 제10권1호
    • /
    • pp.5-11
    • /
    • 2006
  • During the SI engine starting up, starting conditions directly contribute to the harmful emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame Ionization Detector(FRFID). The result showed that HC emissions, which were generated during initial stage of the starting, could be reduced by coolant temperature and fuel injection skips. And through the vehicle test of ECE15+EUDC, it is convinced that the optimized fuel injection skip method according to coolant temperatures have favourable effects on the reduction of harmful exhaust emissions including HC during the SI engine start.

  • PDF

디스플레이공정 진공시스템 밸브응용에 따른 진공특성 전산모사 (Simulation of Vacuum Characteristics by Applications of Vacuum Valves in Display Processing)

  • 김형택
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.77-83
    • /
    • 2012
  • 진공 시스템의 성능에 대한 밸브 컨덕턴스의 영향은 진공시스템의 설계 최적화를 위해 전산모사 되었다. 본 연구에서는, 전산모사기인 VacSimMulti에 의한 모델링기구가 제시되었다. 진공 시스템의 설계는 진공 장비의 다양한 산업적 구현을 위해 특정한 프로세스 조건을 충족해야 한다. 진공 밸브의 구조, 길이, 직경 등은 컨덕턴스 영향의 전산모사 변수로서 모델링 되었으며, 직렬 진공 시스템의 배기 밸브 또한, 다양한 크기와 구조로 모델링하여 전산모사되었다. 밸브 직경의 변화는 도관의 길이의 변화보다 진공특성에 있어 더 유의미한 효과를 보여주었으며 슬릿형의 밸브도관 시스템은 모델링된 밸브구조 중 가장 뛰어난 진공특성을 가지는 것으로 관찰 되었다.

상용차 디젤의 연료분사장치 유닛 인젝터 핵심부품인 스필 밸브의 성능 복원 관한 연구 (A Study on Restoration Technology of Unit Injector Spill Valve for Injection System of Commercial Diesel Engine)

  • 이충근;이정호;이대엽
    • 한국자동차공학회논문집
    • /
    • 제25권3호
    • /
    • pp.389-396
    • /
    • 2017
  • Restorations of automotive parts have been done ever since the first vehicle was produced. Because the most expensive parts of a vehicle are in the engine system, there have been various restoration methods developed for engine parts. In the case of commercial diesel engines, the fuel injection device is a key and expensive component. It also has a significant effect on vehicle performance. In particular, reduced engine power and increased exhaust gas emissions may result from mechanical damage due to abrasion of the spill valve in the fuel injection system of a diesel engine. In this paper, restoration techniques for damaged parts are applied to restore the abrasion of a spill valve of fuel injection, also called as the "unit injector", of commercial diesel engines. In order to recover the damage, optimized polishing techniques using hard-metal and coating processes are applied. To evaluate restoration techniques for the spill valve, performance and durability tests are performed on a test bench.