• 제목/요약/키워드: Exhaust Tube

검색결과 154건 처리시간 0.026초

테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구 (Cabin Noise Reduction of Wheel Loader through the Shape Optimization of Tail-Pipe)

  • 고경은;주원호;김동해;배종국
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1238-1243
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room, however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

산소과급 대형디젤기관에서 고압루트방식 Cooled-EGR적용에 따른 성능 및 배출가스 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Performance and Exhaust Gas Emission with Charging Diesel Engine on Oxygen-enrich and High Pressure Route Cooled-EGR)

  • 김재진;오상기;백두성;한영출
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.37-42
    • /
    • 2003
  • This research was carried on an 8100cc turbo-charged heavy duty diesel in the application of a cooled-EGR. Exhaust and intake manifold were modified and an electronically controlled EGR was installed in order to investigate engine performance and exhausted emission characteristics. High pressure route was designed in the compact form on the purpose of practicability in this cooled-EGR system, which constitutes a venturi tube to maintain pressure difference between exhaust manifold and compressor, an EGR cooler, an EGR valve and a solenoid valve.

온도차를 이용한 열전발전기의 sliding에 따른 열응력 특성 (Characteristics of thermal stress for thermoelectric generator with sliding)

  • 우병철;이희웅;이동윤;김봉서;김병걸;서창민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1904-1906
    • /
    • 1999
  • The purpose of this study is to manufacture and test a thermoelectric generator which converts unused energy from close-at-hand sources, such as garbage incineration heat and industrial exhaust, to electricity. A manufacturing process and the properties of a thermoelectric generator are discussed before simulating the thermal stress and thermal properties of a thermoelectric module located between an aluminum tube and alumina plate. It was shown that the electric voltage of a thermoelectric generator with 128 thermoelectric modules was 4.8 voltage per Kelvin, and the longitudinal stresses of an aluminum tube with a two-point constrained tube could be released more than those with a one-point constrained tube.

  • PDF

다공관 배기 소음기의 음향 모드와 공동음에 관한 연구 (A Study on the Acoustic and Cavity-Tone in a Perforated Through-Tube Muffler)

  • 권영필;이동훈;오승환
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 1995
  • The objective of this study is do obtain the relationship between the acoustic mode and cavity tone induced in a perforated tube exhaust muffler. First, the modal frequency for the axisymmetric radial mode and the mode shape have been computed using the impedance model for the perforated tube. Then, experiment has been perfonned for the onset frequencies of the cavity tone for various design parameters and through-flow. The theoretically obtained modal frequencies are well consistent with the measured onset frequencies of the cavity tone, showing that the cavity tone is induced by the axisymmetric radial mode. And it is found that the modal frequency of a perforated tube muffler is much lower than that of a simple expansion chamber.

  • PDF

저압용 vertex tube의 기하학적형상에 따른 에너지 분리특성에 관한 실험적 연구 (An Experimental Study on the Energy Separation in the Geometric Setup of a Low Pressure Vortex Tube)

  • 오동진;류정인
    • 에너지공학
    • /
    • 제11권3호
    • /
    • pp.276-282
    • /
    • 2002
  • 본 논문에서는 압축공기를 작동매체로 한 저압용 vortex tube에 대한 에너지분리 과정을 상세히 연구하였다. 먼저 vortex tube에서 에너지 분리되어 나오는 온공기와 냉공기의 온도변화에 대하여 실험하였고, vortex tube의 안쪽표면의 최대벽면온도 변화와 vortex tube내의 온도분포를 통하여 vortex tube내 유동장에서의 정체점의 위치에 대한 유용한 정보를 얻게되었다. 이를 바탕으로 vortex tube의 최적 길이와 throttle의 형상, sleeve에 따른 에너지분리과정 등을 실험을 통하여 알아보았다. 또한 본 연구에서는 디젤기관의 배기에 적용하기 위한 외통을 사용하였다. 이때 vortex tube에서 나오는 은공기가 180$^{\circ}$돌아 나오면서 vortex tube의 바깥쪽 벽면을 가열하게 된다. 이러한 기하학적 형상을 통하여 에너지분리효과가 증대됨으로 인하여 디젤기관의 배기가스에 적용 시 고온유동의 온도를 높이고자함에 본 연구의 목적을 두고자한다.

디젤 극미세입자 개수 농도 측정시 Volatile Particle 생성을 억제할 수 있는 희석방법에 관한 실험적 연구 (An Experimental Study of Dilution Methods for Preventing Volatile Particle Generation during Measurement of Diesel Particle Number Concentration)

  • 임태호;김홍석;조형문;이진욱;정용일;전흥신
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.67-73
    • /
    • 2009
  • Recently, Europe decided to start the regulation of diesel engine nanoparticles because of its well known adverse health effects. The diesel nanoparticles can be classified as solid carbon particles and volatile particles. The volatile particles generates during dilution process by condensation of gas phase volatile compounds such as hydrocarbon. The new nanoparticle regulation considers only solid particles because of difficulty of measurement of volatile particles. The aim of this study is to suggest a proper dilution method that prevent the volatile particle generation. As a result, it is found that the $1^{st}$ dilution air temperature should be above $120^{\circ}C$ in order to prevent volatile particle generation effectively. It is also found that the volatile particles can be removed effectively in the evaporation tube by the increase of evaporation tube temperature. But when exhaust gas is hot enough (>$190^{\circ}C$, in this study) and it is diluted in the first diluter with high temperature air (>$120^{\circ}C$), removal phenomenon of volatile particles by increasing of evaporation tube temperature can not be seen. It means that there are no volatile particles in the diluted exhaust gas. Additionally, dilution ratio is not an important factor for volatile particle generation compared with dilution air temperature or evaporation tube temperature.

EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구 (A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC)

  • 이병호;이중섭;김보한;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.

슬롯관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube)

  • 이동훈;뢰호방총
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

균질화 기법을 이용한 딤플 튜브형 인터쿨러의 유한요소해석 및 검증 (Finite Element Analysis and Validation for Dimpled Tube Type Intercooler Using Homogenization Method)

  • 이현민;허성찬;송우진;구태완;강범수;김정
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.153-161
    • /
    • 2009
  • Three-dimensional finite-element methods(FEM) have been used to analyze the thermal stress of an exhaust gas recirculation(EGR) cooler due to thermal and pressure load. Since efficiency and capability of the heat exchanger are mainly dependent on net heat transferring area of the EGR cooler system, the tube inside the system has a numerous dimples on the surface. Thus for finite element analysis, firstly the dimple-typed tube is modeled as a plain element without the dimple, and then the equivalent thermal conductivities and elastic modulus are calculated. This work describes the numerical homogenization procedure of the dimple-typed tube and verifies the equivalent material properties by comparison of a single unit and the actual full model. Finally, the homogenization scheme presented in this study can be efficiently applied to finite element analyses for the thermal stress and deformation behavior of the EGR cooler system with the dimple-typed tube.