• Title/Summary/Keyword: Exhaust

Search Result 3,811, Processing Time 0.03 seconds

Development of Adsorbent for Vapor Phase Elemental Mercury and Study of Adsorption Characteristics (증기상 원소수은의 흡착제 개발 및 흡착특성 연구)

  • Cho, Namjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2021
  • Mercury, once released, is not destroyed but accumulates and circulates in the natural environment, causing serious harm to ecosystems and human health. In the United States, sulfur-impregnated activated carbon is being considered for the removal of vapor mercury from the flue gas of coal-fired power plants, which accounts for about 32 % of the anthropogenic emissions of mercury. In this study, a high-efficiency porous mercury adsorption material was developed to reduce the mercury vapor in the exhaust gas of coal combustion facilities, and the mercury adsorption characteristics of the material were investigated. As a result of the investigation of the vapor mercury adsorption capacity at 30℃, the silica nanotube MCM-41 was only about 35 % compared to the activated carbon Darco FGD commercially used for mercury adsorption, but it increased to 133 % when impregnated with 1.5 % sulfur. In addition, the furnace fly ash recovered from the waste copper regeneration process showed an efficiency of 523 %. Furthermore, the adsorption capacity was investigated at temperatures of 30 ℃, 80 ℃, and 120 ℃, and the best adsorption performance was found to be 80 ℃. MCM-41 is a silica nanotube that can be reused many times due to its rigid structure and has additional advantages, including no possibility of fire due to the formation of hot spots, which is a concern when using activated carbon.

Respiratory Protective Effect of a RML on PM10D-induced Lung Injury Mouse Model (미세먼지 유발 폐기능 손상 동물모델에서 RML의 호흡기 보호 효과)

  • Kim, Soo Hyun;Kim, Min Ju;Shin, Mi-Rae;Roh, Seong-Soo;Kim, Seung Hyung;Park, Hae-Jin
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.29-39
    • /
    • 2022
  • Objective : This study is aimed to evaluate the protective effects of Rehmanniae Radix, Mori Folium, and Liriopie Tuber mixture (RML) on lung injury of Particulate matter less than 10 um in diameter and diesel exhaust particles (PM10D) mice model. Methods : To investigate the anti-inflammatory activity of RML, PM10D was diluted in aluminum hydroxide (Alum) in 7-week-old male mice and induced by Intra-Nazal-Tracheal (INT) injection method. Animal experiments were divided into 5 groups. Nor (normal mice), CTL (PM10D-induced mice with the administration of distilled water), DEXA (PM10D-induced mice with the administration of 3 mg/kg Dexamethasone), RML 100 (PM10D-induced mice treated with RML 100 mg/kg weight), and RML 200 (PM10D-induced mice treated with RML 200 mg/kg body weight). After 11 days administration, mice were sacrificed and inflammation-related immune cells in broncho-alveolar lavage fluid (BALF) were analyzed. Inflammation-related biomarkers were also analyzed in blood and lungs. Lung tissue was observed through histological examination. Results : In the PM10D induced model, the PML showed decreases in CXCL-1 and IL-17A in BALF. Expression of inflammatory cytokines and cough-related mRNA genes was significantly decreased in serum and lung tissue. The mixture treatment of RML significantly improved the immune related cells in the serum. In addition, histological observations showed a tendency to decrease the severity of lung injury. Conclusions : Overall, these results confirmed the respiratory protective effect of the RML mixture in a model of lung injury induced by air pollution (PM10+DEP), suggesting that it is a potential treatment for respiratory damage.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

Respiratory protective effects of Korean Red Ginseng in a mouse model of particulate matter 4-induced airway inflammation

  • Won-Kyung Yang;Sung-Won Kim;Soo Hyun Youn;Sun Hee Hyun;Chang-Kyun Han;Yang-Chun Park;Young-Cheol Lee;Seung-Hyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.81-88
    • /
    • 2023
  • Background: Air pollution has led to an increased exposure of all living organisms to fine dust. Therefore, research efforts are being made to devise preventive and therapeutic remedies against fine dust-induced chronic diseases. Methods: Research of the respiratory protective effects of KRG extract in a particulate matter (PM; aerodynamic diameter of <4 ㎛) plus diesel exhaust particle (DEP) (PM4+D)-induced airway inflammation model. Nitric oxide production, expression of pro-inflammatory mediators and cytokines, and IRAK-1, TAK-1, and MAPK pathways were examined in PM4-stimulated MH-S cells. BALB/c mice exposed to PM4+D mixture by intranasal tracheal injection three times a day for 12 days at 3 day intervals and KRGE were administered orally for 12 days. Histological of lung and trachea, and immune cell subtype analyses were performed. Expression of pro-inflammatory mediators and cytokines in bronchoalveolar lavage fluid (BALF) and lung were measured. Immunohistofluorescence staining for IRAK-1 localization in lung were also evaluated. Results: KRGE inhibited the production of nitric oxide, the expression of pro-inflammatory mediators and cytokines, and expression and phosphorylation of all downstream factors of NF-κB, including IRAK-1 and MAPK/AP1 pathway in PM4-stimulated MH-S cells. KRGE suppressed inflammatory cell infiltration and number of immune cells, histopathologic damage, and inflammatory symptoms in the BALF and lungs induced by PM4+D; these included increased alveolar wall thickness, accumulation of collagen fibers, and TNF-α, MIP2, CXCL-1, IL-1α, and IL-17 cytokine release. Moreover, PM4 participates induce alveolar macrophage death and interleukin-1α release by associating with IRAK-1 localization was also potently inhibited by KRGE in the lungs of PM4+D-induced airway inflammation model. KRGE suppresses airway inflammatory responses, including granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines via inhibition of IRAK-1 and MAPK pathway. Conclusion: Our results indicate the potential of KRGE to serve as an effective therapeutic agent against airway inflammation and respiratory diseases.

An Efficient Routing Scheme based on Link Quality and Load Balancing for Wireless Sensor Networks (무선 센서 네트워크에서 링크 상태 및 트래픽 분산 정보를 이용한 효과적인 라우팅 방법)

  • Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2010
  • ZigBee is a standard for wireless personal area networks(WPANs) based on the IEEE 802.15.4 standard. It has been developed for low cost and low power consumption. There are two alternative routing schemes that have been proposed for the ZigBee standard: Ad-hoc On-Demand Distance Vector(AODV) and tree routing. The tree routing forwards packets from sensors to a sink node based on the parent-child relationships established by the IEEE 802.15.4 MAC topology formation procedure. In order to join the network, a sensor node chooses an existing node with the strongest RSSI(Received signal strength indicator) signal as a parent node. Therefore, some nodes carry a large amount of traffic load and exhaust their energy rapidly. To overcome this problem, we introduce a new metric based on link quality and traffic load for load balancing. Instead of the strength of RSSI, the proposed scheme uses the new metric to choose a parent node during the topology formation procedure. Extensive simulation results using TOSSIM(TinyOS mote SIMulator) show that the CFR scheme outperforms well in comparison to the conventional tree routing scheme.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.

Explosion Likelihood Investigation of Facility Using CVD Equipment Using SEMI S6 (SEMI S6를 적용한 CVD 설비의 폭발분위기 조성 가능성 분석)

  • Mi Jeong Lee;Dae Won Seo;Seong Hee Lee;Dong Geon Lee;Se Jong Bae;Jong-Bae Baek
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.62-67
    • /
    • 2023
  • Due to the prolonged impact of COVID-19, the demand for Information Technology (IT) products is increasing, and their production facilities are expanded. Consequently, the use of harmful and dangerous chemicals are increased, the risk of fire(s) and explosion(s) is also elevated. In order to mitigate these risks, the government sets standards, such as KS C IEC 60079-10-1, and manages explosion-prone hazardous facilities where flammable substances are manufactured, used, and handled. However, using the standards of KS, it is difficult to predict the actual possibility of an explosion in a facility, because ventilation (an important factor) is not considered when setting up a hazardous work environment. In this study, the SEMI S6, Tracer Gas Test was applied to the chemical vapor deposition (CVD) facility, a major part of the display industry, to evaluate ventilation performance and to confirm the possibility of creating a less explosive environment. Based on the results, it was confirmed that the ventilation performance in the assumed scenarios met the standards stipulated in SEMI S6, along with supporting the possibility of creating a less explosive working condition. Therefore, it is recommended to use the prediction tool using engineering techniques, as well as KS standards, in such hazardous environments to prevent accidents and/or reduce economic burden following accidents.

A Study on the Prediction of Nitrogen Oxide Emissions in Rotary Kiln Process using Machine Learning (머신러닝 기법을 이용한 로터리 킬른 공정의 질소산화물 배출예측에 관한 연구)

  • Je-Hyeung Yoo;Cheong-Yeul Park;Jae Kwon Bae
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.19-27
    • /
    • 2023
  • As the secondary battery market expands, the process of producing laterite ore using the rotary kiln and electric furnace method is expanding worldwide. As ESG management expands, the management of air pollutants such as nitrogen oxides in exhaust gases is strengthened. The rotary kiln, one of the main facilities of the pyrometallurgy process, is a facility for drying and preliminary reduction of ore, and it generate nitrogen oxides, thus prediction of nitrogen oxide is important. In this study, LSTM for regression prediction and LightGBM for classification prediction were used to predict and then model optimization was performed using AutoML. When applying LSTM, the predicted value after 5 minutes was 0.86, MAE 5.13ppm, and after 40 minutes, the predicted value was 0.38 and MAE 10.84ppm. As a result of applying LightGBM for classification prediction, the test accuracy rose from 0.75 after 5 minutes to 0.61 after 40 minutes, to a level that can be used for actual operation, and as a result of model optimization through AutoML, the accuracy of the prediction after 5 minutes improved from 0.75 to 0.80 and from 0.61 to 0.70. Through this study, nitrogen oxide prediction values can be applied to actual operations to contribute to compliance with air pollutant emission regulations and ESG management.

Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners (항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가)

  • Hyunhee Park;Sedong Kim;Sungho Kim;Seung-Hyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.