Browse > Article
http://dx.doi.org/10.14478/ace.2021.1088

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization  

Youn, Hee Sun (Department of Food Biotechnology and Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University)
Um, Byung Hwan (Department of Food Biotechnology and Chemical Engineering and Interagency Convergence Energy on New Biomass Industry, Hankyong National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 28-37 More about this Journal
Abstract
The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.
Keywords
Kenaf; Hydrothermal carbonization; Hydrochar; Higher heating value (HHV); Fuel ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Wang, J. Zhang, J. Y. Lee, X. Mao, L. Ye, W. Xu, X. Ning, N. Zhang, H. Teng, and C. Wang Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energ., 266 (2020).
2 K. Fakkaew, T. Koottatep, S. Jairuang, and C. Polprasert, Hydrochar pellet produced from hydrothermal carbonization of fecal sludge, Biomass Convers. Biorefin. (2021).
3 S. F. Shaikh, M. Ubaidullah, R. S. Mane, and A. M. Al-Enizi, Types, Synthesis methods and applications of ferrites, In: Spinel Ferrite Nanostructures for Energy Storage Devices, 51-82, Elsevier (2020).
4 Y. T. Yang, X. X. Yang, Y. T. Wang, J. Luo, F. Zhang, W. J. Yang, and J. H. Chen, Alcohothermal carbonization of biomass to prepare novel solid catalysts for oleic acid esterification, Fuel, 219, 166-175 (2018).   DOI
5 Y. C. Zhao, L. Zhao, L. J. Mao, and B. H. Han, One-step solvothermal carbonization to microporous carbon materials derived from cyclodextrins, J. Mater. Chem. A, 1, 9456-9461 (2013).   DOI
6 S. Nizamuddin, H. A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. ali, An overview of effect of process parameters on hydrothermal carbonization of biomass, Renew. Sust. Energ. Rev., 73, 1289-1299 (2017).   DOI
7 S. K. Hoekman, A. Broch, and C. Robbins, Hydrothermal carbonization (HTC) of lignocellulosic biomass, Energy Fuels, 25, 1802-1810 (2011).   DOI
8 H. B. Sharma, A. K. Sarmah, and B. Dubey, Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar, Renew. Sust. Energ. Rev., 123. Elsevier Ltd (2020).
9 I. Energy Agency, Statistics report Key World Energy Statistics 2020, IEA (2020).
10 K. Raveendran, A. Ganesh, and K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel, 75, 987-998 (1996).   DOI
11 N. P. Say, Lignite-fired thermal power plants and SO2 pollution in Turkey, Energy Policy, 34, 2690-2701 (2006).   DOI
12 M. Govindaraju, R. S. Ganeshkumar, V. R. Muthukumaran, and P. Visvanathan, Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development, Environ. Sci. Pollut. Res., 19, 1210-1223 (2012).   DOI
13 J. G. Lynam, M. T. Reza, W. Yan, V. R. Vasquez, and C. J. Coronella, Hydrothermal carbonization of various lignocellulosic biomass, Biomass Convers. Biorefin., 5, 173-181 (2015).   DOI
14 P. Grammelis, N. Margaritis, and E. Karampinis, Solid fuel types for energy generation: Coal and fossil carbon-derivative solid fuels, In: Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels, 29-58, Elsevier (2016).
15 S. A. Channiwala and P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel, 81, 1051-1063 (2002).   DOI
16 J. Park, Woody pellet produce and sale rate, Korea Forest Service (2020).
17 S. Hong, Analysis report on eco-friendly crops(kenaf), KONETIC (2018)
18 S. T. Yoganandham, G. Sathyamoorthy, and R. R. Renuka, Emerging extraction techniques: Hydrothermal processing, In: Sustainable Seaweed Technologies. 191-205, Elsevier (2020).
19 H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781- 1788 (2007).   DOI
20 S. Basakcilardan Kabakci and S. S. Baran, Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars, Waste Manage., 100, 259-268 (2019).   DOI
21 R. K. Mishra and K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251, 63-74 (2018).   DOI
22 W. Yan, S. Perez, and K. Sheng, Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization, Fuel, 196, 473-480 (2017).   DOI
23 M. B. Samaila, B. G. Muhammad, A. H. Adam, A. Moumouni, and S. Bello, Characterization of Coal obtained from the Sahelian Regions of Nigeria and Niger Republic, J. Appl. Sci. Environ. Manage., 24, 299-302 (2020).
24 M. Zhou, J. Xu, J. Jiang, and B. K. Sharma, A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts, Energies, 11 (2018).
25 L. Nazari, Z. Yuan, S. Souzanchi, M. B. Ray, and C. Xu, Hydrothermal liquefaction of woody biomass in hot-compressed water: Catalyst screening and comprehensive characterization of bio-crude oils, Fuel, 162, 74-83 (2015).   DOI
26 S. Brand, F. Hardi, J. Kim, and D. J. Suh, Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol, Energy, 68, 420-427, Apr. (2014).   DOI
27 B. Babinszki, E. Jakab, Z. Sebestyen, M. Blazso, B. Berenyi, J. Kumar, B. B.Krishna, T. Bhaskar, and Z. Czegeny, Comparison of hydrothermal carbonization and torrefaction of azolla biomass: Analysis of the solid products, J. Anal. Appl. Pyrol., 149 (2020).
28 N. Xiang, P. Xu, N. Ran and T. Ye, Production of acetic acid from ethanol over CuCr catalysts: Via dehydrogenation-(aldehyde-water shift) reaction, RSC Adv., 7, 38586-38593 (2017).   DOI
29 A. Funke and F. Ziegler, Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering, Biofuel. Bioprod. Biorefin., 6, 246-256 (2010).   DOI
30 S. Rasam, M. Keshavarz Moraveji, A. Soria-Verdugo, and A. Salimi, Synthesis, characterization and absorbability of Crocus sativus petals hydrothermal carbonized hydrochar and activated hydrochar, Chem. Eng. Process., 159, 108236 (2021).   DOI
31 X. Zhang, L. Zhang, and A. Li, Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization, J. Environ. Manage., 201, 52-62 (2017).   DOI
32 M. Wilk, M. Sliz, and M. Gajek, The effects of hydrothermal carbonization operating parameters on high-value hydrochar derived from beet pulp, Renew. Energ., 177, 216-228 (2021).   DOI
33 S. Nizamuddin, N. M. Mubarak, M. Tiripathi, N. S. Jayakumar, J. N. Sahu, and P. Ganesan, Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell, Fuel, 163, 88-97 (2016).   DOI