• Title/Summary/Keyword: Exergy analysis

Search Result 112, Processing Time 0.024 seconds

Analysis of the Rankine Cycle Including Heat Exchange Processes (熱交換 過程을 考慮한 랜킨 사이클의 性能解析)

  • 정평석;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.150-156
    • /
    • 1986
  • A Rankine cycle including heat exchange processes in the steam generator has been analyzed by the concept of available energy. The operation condition of the cycle can be expressed with the evaporation temperature, and there exists an optimum power condition at which the thermal efficiency of the cycle is almost the same as that of the Carnot cycle at the maximum power condition. The mass flow rate of the working fluid increases sharply as the evaporation temperature approaches to the critical point, and the regenerative system is needed to operate the cycle at the maximum power condition.

Thermoeconomics Analysis to apply net concept of material flow to Power System (발전시스템에 물질흐름의 net 개념을 적용한 열경제학 해석)

  • Kim, Deok-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.962-969
    • /
    • 2000
  • Quality that character of energy is the same at every state in case of equal working fluid and net concept of material flow was applied to thermoeconomics about energy system, and we could naturally explain the suitable degree about this concept, also thermoecomic equations about general power plant was easily deduced. And deduced equations exactly corresponded with principle of thermoeconomics that overall input cost flow rate equal overall output cost flow rate. This equations is applied to gas turbine cogeneration power plant as one example and found the product unit cost. Also this product cost comparison could been naturally explained.

  • PDF

Drawing of Twenty Kinds of State and Process on Psychrometric Chart (습공기선도 상에 20 종류의 상태 및 과정 값의 작도)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1201-1206
    • /
    • 2008
  • Psychrometric chart displays graphically the thermophysical properties of moist air, so it is very conveniently used in air-conditioning and refrigeration. On general psychrometric chart, there are dry bulb temperature, web bulb temperature, absolute humidity ratio, relative humidity, specific enthalpy, specific volume, sensible heat factor, and enthalpy-humidity difference ratio. However, various state and process values besides aboves can be plotted on psychrometric chart. In this study, we developed the software drawing twenty kinds of lines, that is vapor pressure, mole fraction ratio of vapor, dew point temperature, degree of saturation, density, specific entropy, specific exergy, contact or bypass factor, uncomfort index, discomposition index, predicted mean vote index, predicted percent dissatisfied, and so on. We wish to this software is a help to design, analysis and education.

  • PDF

Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle (순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석)

  • Kim, Semie;Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.60-67
    • /
    • 2021
  • This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 ℃, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.

Characteristics and Modeling Analysis of Entrained Flow Gasifiers (분류층 가스화기 특징 및 공정모사 분석)

  • Yoo, Jeongseok;Kim, Youseok;Paek, Minsu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.20-28
    • /
    • 2013
  • The gasification process has developed to convert coal into the more useful energy and material since decades. Despite the numberous design of ones, entrained flow gasifier of the major companies has had an advantage on the market. Because it has a merit of full-scale and high performance plant. In this paper, the gasification technologies of GE energy, Phillips, Siemens and Shell have been reviewed to compare their characteristics and a high performance gasification process was suggested. And the simulation model of gasifiers using Aspen Plus offered the quantitative comparison data for difference designs. The simulation results revealed the poor performance of the slurry feed than dry design. The corresponding cold gas efficiency of 77% is much lower than the 80.3% for the dry feed cases. The exergy analysis of the difference syngas quenching system showed that chemical quenching is superior to another. The results of analysis recommend the two stage gasifier with dry multi-feeder as the energy effective design.

Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1288-1294
    • /
    • 2022
  • Hydrogen as an environmentally friendly energy carrier has received special attention to solving uncertainty about the presence of renewable energy and its dependence on time and weather conditions. This material can be prepared from different sources and in various ways. In previous studies, fossil fuels have been used in hydrogen production, but due to several limitations, especially the limitation of the access to this material in the not-too-distant future and the great problem of greenhouse gas emissions during hydrogen production methods. New methods based on renewable and green energy sources as energy drivers of hydrogen production have been considered. In these methods, water or biomass materials are used as the raw material for hydrogen production. In this article, after a brief review of different hydrogen production methods concerning the required raw material, these methods are examined and ranked from different aspects of economic, social, environmental, and energy and exergy analysis sustainability. In the following, the current position of hydrogen production is discussed. Finally, according to the introduced methods, their advantages, and disadvantages, solar electrolysis as a method of hydrogen production on a small scale and hydrogen production by thermochemical method on a large scale are introduced as the preferred methods.

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석)

  • Kim, Young Min;Shin, Dong Gil;Kim, Chang Gi;Woo, Se Jong;Choi, Byung Chul
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.402-410
    • /
    • 2012
  • A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.

A Suggestion of New Methodology on Thermoeconomics (열경제학에 대한 새로운 방법론 제안)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.315-320
    • /
    • 2009
  • Thermoeconomics or exergoeconomics can be classified into the three fields of cost estimating, cost optimization, and internal cost analysis. The objective of cost estimating is to estimate each unit cost of product and allocate each cost flow of product such as electricity or hot water. The objective of optimization is to minimize the input costs of capital and energy resource or maximize the output costs of products under the given constraints. The objective of internal cost analysis is to find out the cost formation process and calculate the amount of cost flow at each state, each component, and overall system. In this study, a new thermoeconomic methodology was proposed in the three fields. The proposed methodology is very simple and obvious. That is, the equation is only each one, and there are no auxiliary equations. Any energy including enthalpy and exergy can be applied and evaluated by this equation. As a new field, the cost allocation methodology on cool air or hot air produced from an air-condition system was proposed. Extending this concept, the proposed methodology can be applied to any complex system.

  • PDF

Analysis of Counterflow Heat Exchangers with the Concept of Available Energy (가용에너지를 이용한 대향류 열교환기의 해석)

  • 김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2189-2195
    • /
    • 1992
  • The performance of heat exchanger as an energy conversion device can be described by the available energy output and efficiency. The efficiency is defined as the ratio of the available energy output and the exergy of the heat source flow. In present study, a counterflow heat exchanger is analyzed and the conditions to obtain maximum output is numerically determined. As a result, the avilable energy obtained by the cold flow can be determined as functions of the heat capacity flow, the cold flow inlet temperature and the heat transfer capacity of heat exchanger. At the maximum output condition the heat capacity flow of the cold fluid is larger than that of the heat source, and the heat capacity flow ratio is equal to the ratio of the cold flow inlet temperature and the atmospheric temperature. And the avilable energy output increases as the heat transfer capacity of the heat exchanger become larger, but in the economic point of view there is also an optimum heat transfer capacity for a given heat source flow.

Effectiveness analysis of pre-cooling methods on hydrogen liquefaction process

  • Yang, Yejun;Park, Taejin;Kwon, Dohoon;Jin, Lingxue;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.20-24
    • /
    • 2020
  • The purpose of this analytic study is to design and examine an efficient hydrogen liquefaction cycle by using a pre-cooler. The liquefaction cycle is primarily comprised of a pre-cooler and a refrigerator. The fed hydrogen gas is cooled down from ambient temperature (300 K) to the pre-cooling coolant temperature (either 77 K or 120 K approximately) through the pre-cooler. There are two pre-cooling methods: a single pre-coolant pre-cooler and a cascade pre-cooler which uses two levels of pre-coolants. After heat exchanging with the pre-cooler, the hydrogen gas is further cooled and finally liquefied through the refrigerator. The working fluids of the potential pre-cooling cycle are selected as liquid nitrogen and liquefied natural gas. A commercial software Aspen HYSYS is utilized to perform the numerical simulation of the proposed liquefaction cycle. Efficiency is compared with respect to the various conditions of the heat exchanging part of the pre-cooler. The analysis results show that the cascade method is more efficient, and the heat exchanging part of the pre-coolers should have specific UA ratios to maximize both spatial and energy efficiencies. This paper presents the quantitative performance of the pre-cooler in the hydrogen liquefaction cycle in detail, which shall be useful for designing an energy-efficient liquefaction system.