DOI QR코드

DOI QR Code

Performance Analysis of Two-Loop Rankine Cycle for Engine Waste Heat Recovery

엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석

  • Kim, Young Min (Department of Engine Research, Korea Institute of Machinery & Materials) ;
  • Shin, Dong Gil (Department of Engine Research, Korea Institute of Machinery & Materials) ;
  • Kim, Chang Gi (Department of Engine Research, Korea Institute of Machinery & Materials) ;
  • Woo, Se Jong (Department of Engine Research, Korea Institute of Machinery & Materials) ;
  • Choi, Byung Chul (Environmental & Plant Team, Korean Register of Shipping)
  • 김영민 (한국기계연구원 그린동력연구실) ;
  • 신동길 (한국기계연구원 그린동력연구실) ;
  • 김창기 (한국기계연구원 그린동력연구실) ;
  • 우세종 (한국기계연구원 그린동력연구실) ;
  • 최병철 (한국선급 환경플랜트팀)
  • Received : 2012.10.14
  • Accepted : 2012.12.05
  • Published : 2012.12.31

Abstract

A two-loop Rankine cycle for engine waste heat recovery of gasoline vehicle has been investigated. Water-steam cycle as a high-temperature (HT) loop for exhaust gas heat recovery and R-134a cycle as a low-temperature (LT) loop for both heat recovery of the engine coolant and the residual heat from the HT loop were considered. Energy and exergy analysis was performed to investigate the performance of the system. Because two volumetric expanders are used for the HT and LT loop, the sizes of two expanders are very important for the optimization of the system. The effects of pressure ratio of the HT loop, considering the size of the HT expander, and the condensation temperature of LT loop on the performance of the system at a target engine condition were investigated. This study shows that about 20% of additional power from the engine waste heat recovery can be obtained at the target engine condition.

본 연구에서는 가솔린 엔진 자동차에서 엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 성능 해석이 수행되었다. 고온(HT)의 엔진 배기가스 열회수를 위해서는 물을 사용하는 스팀사이클이 적용되었고, 엔진 냉각수열과 고온 사이클로부터의 응축열을 활용하는 저온(LT) 사이클은 R-134a를 사용하는 유기랭킨사이클이 적용되었다. 고온 및 저온 열원을 동시에 활용하는 이중 회로 시스템의 특성을 파악하기 위해 에너지 및 엑서지 분석이 수행되었다. 고온 및 저온 사이클에 사용되는 용적형 팽창기의 체적이 차량적용을 위한 시스템 최적화에 매우 중요하며 시스템 최적화를 위해서는 반드시 고려되어야 한다. 목표로 하는 엔진 운전 조건에서 고온(HT) 팽창기와 저온(LT) 팽창기의 체적을 고려하면서 고온(HT) 사이클의 팽창비와 저온(LT) 사이클의 응축온도가 시스템의 성능에 미치는 영향을 파악하였다. 본 연구에서는 이러한 이중 회로 랭킨 사이클 시스템에 의해 목표 엔진 운전조건에서 엔진 폐열로부터 약 21%의 추가 동력을 얻을 수 있는 것으로 예측되었다.

Keywords

References

  1. Dolz V; Novella R; Garcia A; Sanchez J. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat recovery, Applied Thermal Engineering, 2012, 36, 269-278 https://doi.org/10.1016/j.applthermaleng.2011.10.025
  2. Wang EH; Zhang HG; Zhao Y; Fan BY; Wu YT; Mu QH. Performance analysis of a novel system combining a dual loop organic Rankine cycle (ORC) with a gasoline engine, Energy, 2012, 43, 385-395 https://doi.org/10.1016/j.energy.2012.04.006
  3. Vaja I; Gambarotta A. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs), Energy, 2010, 35, 1084-1093 https://doi.org/10.1016/j.energy.2009.06.001
  4. Heo HS; Bae SJ. Technology trends of Rankine steam sycle for engine waste heat recovery, Auto Journal of KSAE, 2010, 32(5), 23-32
  5. Bae SJ; Heo HS; Lee DH; Lee HK; Kang TG; Kim TJ. Performance evaluation of an evaporator for waste heat recovery from exhaust gas, Spring Conference of KSAE, 2011, 198-206
  6. Eom HS; Yoon CS; Kim YM; Shin DG; Kim CG. Optimization study on the performance analysis of organic Rankine cycle for characteristics of low temperature heat sources, KJACR, 2012, 24(1), 51-60 https://doi.org/10.6110/KJACR.2012.24.1.051
  7. Fischer J. Comparison of trilateral cycles and organic Rankine cycles, Energy, 2011, 36, 6208-6219 https://doi.org/10.1016/j.energy.2011.07.041

Cited by

  1. Optimization of Design Pressure Ratio of Positive Displacement Expander for Vehicle Engine Waste Heat Recovery vol.7, pp.9, 2014, https://doi.org/10.3390/en7096105
  2. Optimization of Design Pressure Ratio of Positive Displacement Expander for Engine Waste Heat Recovery of Vehicle vol.21, pp.4, 2012, https://doi.org/10.5855/ENERGY.2012.21.4.411