• Title/Summary/Keyword: Execution-based detection

Search Result 105, Processing Time 0.024 seconds

Hierarchical Authentication Algorithm Using Curvature Based Fiducial Point Extraction of ECG Signals (곡률기반 기준점 검출을 이용한 계층적 심전도 신호 개인인증 알고리즘)

  • Kim, Jungjoon;Lee, SeungMin;Ryu, Gang-Soo;Lee, Jong-Hak;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.465-473
    • /
    • 2017
  • Electrocardiogram(ECG) signal is one of the unique bio-signals of individuals and is used for personal authentication. The existing studies on personal authentication method using ECG signals show a high detection rate for a small group of candidates, but a low detection rate and increased execution time for a large group of candidates. In this paper, we propose a hierarchical algorithm that extracts fiducial points based on curvature of ECG signals as feature values for grouping candidates ​and identifies candidates using waveform-based comparisons. As a result of experiments on 74 ECG signal records of QT-DB provided by Physionet, the detection rate was about 97% at 3-heartbeat input and about 99% at 5-heartbeat input. The average execution time was 22.4 milliseconds. In conclusion, the proposed method improves the detection rate by the hierarchical personal authentication process, and also shows reduced amount of computation which is plausible in real-time personal authentication usage in the future.

Probabilistic Soft Error Detection Based on Anomaly Speculation

  • Yoo, Joon-Hyuk
    • Journal of Information Processing Systems
    • /
    • v.7 no.3
    • /
    • pp.435-446
    • /
    • 2011
  • Microprocessors are becoming increasingly vulnerable to soft errors due to the current trends of semiconductor technology scaling. Traditional redundant multi-threading architectures provide perfect fault tolerance by re-executing all the computations. However, such a full re-execution technique significantly increases the verification workload on the processor resources, resulting in severe performance degradation. This paper presents a pro-active verification management approach to mitigate the verification workload to increase its performance with a minimal effect on overall reliability. An anomaly-speculation-based filter checker is proposed to guide a verification priority before the re-execution process starts. This technique is accomplished by exploiting a value similarity property, which is defined by a frequent occurrence of partially identical values. Based on the biased distribution of similarity distance measure, this paper investigates further application to exploit similar values for soft error tolerance with anomaly speculation. Extensive measurements prove that the majority of instructions produce values, which are different from the previous result value, only in a few bits. Experimental results show that the proposed scheme accelerates the processor to be 180% faster than traditional fully-fault-tolerant processor with a minimal impact on overall soft error rate.

An Automatic Summarization System of Baseball Game Video Using the Caption Information (자막 정보를 이용한 야구경기 비디오의 자동요약 시스템)

  • 유기원;허영식
    • Journal of Broadcast Engineering
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 2002
  • In this paper, we propose a method and a software system for automatic summarization of baseball game videos. The proposed system pursues fast execution and high accuracy of summarization. To satisfy the requirement, the detection of important events in baseball video is performed through DC-based shot boundary detection algorithm and simple caption recognition method. Furthermore, the proposed system supports a hierarchical description so that users can browse and navigate videos in several levels of summarization. In this paper, we propose a method and a software system for automatic summarization of baseball game videos. The proposed system pursues fast execution and high accuracy of summarization. To satisfy the requirement, the detection of important events in baseball video is performed through DC-based shot boundary detection algorithm and simple caption recognition method. Furthermore, the proposed system supports a hierarchical description so that users can browse and navigate videos in several levels of summarization.

A Coverage-Based Software Reliability Growth Model for Imperfect Fault Detection and Repeated Construct Execution (불완전 결함 발견과 구문 반복 실행을 고려한 커버리지 기반 신뢰성 성장 모형)

  • Park, Joong-Yang;Park, Jae-Heung;Kim, Young-Soon
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1287-1294
    • /
    • 2004
  • Recently relationships between reliability measures and the coverage have been developed for evaluation of software reliability. Particularly the mean value function of the coverage-based software reliability growth model is important because of its key role in rep-resenting the software reliability growth. In this paper, we first review the problems of the existing mean value functions with respect to the assumptions on which they are based. Then a new mean value function is proposed. The new mean value function is developed for a general testing environment in which imperfect fault detection and repeated construct execution are allowed. Finally performance of the proposed model is empirically evaluated by applying it to a real data set.

PowerShell-based Malware Detection Method Using Command Execution Monitoring and Deep Learning (명령 실행 모니터링과 딥 러닝을 이용한 파워셸 기반 악성코드 탐지 방법)

  • Lee, Seung-Hyeon;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1197-1207
    • /
    • 2018
  • PowerShell is command line shell and scripting language, built on the .NET framework, and it has several advantages as an attack tool, including built-in support for Windows, easy code concealment and persistence, and various pen-test frameworks. Accordingly, malwares using PowerShell are increasing rapidly, however, there is a limit to cope with the conventional malware detection technique. In this paper, we propose an improved monitoring method to observe commands executed in the PowerShell and a deep learning based malware classification model that extract features from commands using Convolutional Neural Network(CNN) and send them to Recurrent Neural Network(RNN) according to the order of execution. As a result of testing the proposed model with 5-fold cross validation using 1,916 PowerShell-based malwares collected at malware sharing site and 38,148 benign scripts disclosed by an obfuscation detection study, it shows that the model effectively detects malwares with about 97% True Positive Rate(TPR) and 1% False Positive Rate(FPR).

A Transparent Monitor Based on JDI for Scalable Race Detection of Concurrent Java Programs (병행 Java 프로그램의 확장적 경합탐지를 위한 JDI 기반의 투명한 감시도구)

  • Kim, Young-Joo;Kuh, In-Bon;Bae, Byoung-Jin;Jun, Yong-Kee
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.55-60
    • /
    • 2009
  • Race conditions in current Java programs must be detected because it may cause unexpected result by non-deterministic executions. For detecting such races during program execution, execution flows of all threads and all access events can be monitored. It is difficult for previous race detection techniques to monitor all threads and access events in actuality because these techniques analyze the files traced during program execution or modify original source programs and then monitor these programs. This paper presents a transparent scalable monitoring tool to detect races using JDI(Java Debug Interface) where JDI is 100% pure java interface to provide in JDPA(Java Platform Debugger Architecture) and is able to provide information corresponding to events occurred in run-time of programs. This tool thus can monitor execution flows of all threads and all access events without program modification. We prove transparency of the presented tool and grasp the efficiency of it using a set of published benchmark programs. As a result of this, the suggested tool can monitor all threads and accesses of these programs without their modification, and their monitoring time is increased to more than 20 times.

A Face Detection Method Based on Adaboost Algorithm using New Free Rectangle Feature (새로운 Free Rectangle 특징을 사용한 Adaboost 기반 얼굴검출 방법)

  • Hong, Yong-Hee;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2010
  • This paper proposes a face detection method using Free Rectangle feature which possesses a quick execution time and a high efficiency. The proposed mask of Free Rectangle feature is composed of two separable rectangles with the same area. In order to increase the feature diversity, Haar-like feature generally uses a complex mask composed of two or more rectangles. But the proposed feature mask can get a lot of very efficient features according to any position and scale of two rectangles on the feature window. Moreover, the Free Rectangle feature can largely reduce the execution time since it is defined as the only difference of the sum of pixels of two rectangles irrespective of the mask type. Since it yields a quick detection speed and good detection rates on real world images, the proposed face detection method based on Adaboost algorithm is easily applied to detect another object by changing the training dataset.

Moving object detection for biped walking robot flatfrom (이족로봇 플랫폼을 위한 동체탐지)

  • Kang, Tae-Koo;Hwang, Sang-Hyun;Kim, Dong-Won;Park, Gui-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.570-572
    • /
    • 2006
  • This paper discusses the method of moving object detection for biped robot walking. Most researches on vision based object detection have mostly focused on fixed camera based algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since hired walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, method for moving object detection has been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. But these methods are not suitable to biped walking robot. So, we suggest the advanced method which is suitable to biped walking robot platform. For carrying out certain tasks, an object detecting system using modified optical flow algorithm by wireless vision camera is implemented in a biped walking robot.

  • PDF

Execution-based System and Its Performance Analysis for Detecting Malicious Web Pages using High Interaction Client Honeypot (고 상호작용 클라이언트 허니팟을 이용한 실행 기반의 악성 웹 페이지 탐지 시스템 및 성능 분석)

  • Kim, Min-Jae;Chang, Hye-Young;Cho, Seong-Je
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.1003-1007
    • /
    • 2009
  • Client-side attacks including drive-by download target vulnerabilities in client applications that interact with a malicious server or process malicious data. A typical client-side attack is web-based one related to a malicious web page exploiting specific browser vulnerability that can execute mal ware on the client system (PC) or give complete control of it to the malicious server. To defend those attacks, this paper has constructed high interaction client honeypot system using Capture-HPC that adopts execution-based detection in virtual machine. We have detected and classified malicious web pages using the system. We have also analyzed the system's performance in terms of the number of virtual machine images and the number of browsers executed simultaneously in each virtual machine. Experimental results show that the system with one virtual machine image obtains better performance with less reverting overhead. The system also shows good performance when the number of browsers executed simultaneously in a virtual machine is 50.

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.