• Title/Summary/Keyword: Excited state

Search Result 463, Processing Time 0.02 seconds

Effects of Amino Substitution on the Excited State Hydrogen Transfer in Phenol: A TDDFT Study

  • Kim, Sang-Su;Kim, Min-Ho;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1481-1484
    • /
    • 2009
  • When isolated phenol or a small phenol-solvent cluster is excited to the $S_1\;state\;of\;{\pi}{\pi}^*$ character, the hydrogen atom of the hydroxyl group dissociates via a ${\pi}{\sigma}^*$ state that is repulsive along the O-H bond. We computationally investigated the substitution effects of an amino group on the excited state hydrogen transfer reaction of phenol. The time-dependent density functional theory (TDDFT) with B3LYP functional was employed to calculate the potential energy profiles of the ${\pi}{\pi}^*$ and the ${\pi}{\sigma}^*$ excited states along the O-H coordinate, together with the orbital shape at each point, as the position of the substituent was varied. It was found that the amino substitution has an effect of lowering the ${\pi}{\sigma}^*$ state and enhancing the excited state hydrogen transfer reaction.

CONCENTRATION DEPENDENCES OF GROUND-STATE AND EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER OF PIROXICAM IN METHANOL

  • Cho, Dae-Won;Kang, Seong-Gwan;Kim, Yong-Hee;Yoon, Min-Joong;Kim, Dong-Ho
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.15-23
    • /
    • 1994
  • The absorption and fluorescence spectral properties of piroxicam (PRX) in the hydrogenbonding solvents show the most sensitive dependence on the concentration ranging from 8 x 10$^{_5}$ to 2 x10$^{_5}$ M. These are attributed to both the solvent-mediated ground-state intermolecular proton transfer (GSIerPT) leading to formation of the ground state anion and the excited-state intmmolecular proton transfer (ESIraPT). The concentration dependences of the time-resolved emission kinetics at both room temperature and 77 K have also been investigated. It is shown that in the excited state, the ESIraPT of PRX is the dominant process to form a keto tautomer at the high concentration, whereas at the low concentration the excited-state conformational change of the anion is an additional process leading to formation of a zwitterion. The ESI~PT of PRX in the hydrogenbonding solvent is coupled with the ultrafast excited-state solvent reorganization.

  • PDF

The Construction of Semi-diabatic Potential Energy Surfaces of Excited States for Use in Excited State AIMD Studies by the Equation-of-Motion Coupled-Cluster Method

  • Baeck, Kyoung-Koo;Martinez, Todd J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.712-716
    • /
    • 2003
  • The semi-diabatic potential energy surfaces (PESs) of the excited states of polyatomic molecules can be constructed for use in ab initio molecular dynamics (AIMD) studies by relying on the continuity of the electronic energy, oscillator strength, and spherical extent of an excited state along with first derivatives of these quantities as computed by using the equation-of-motion coupled-cluster (EOM-CC) method. The semidiabatic PESs of both the π → $π^*$ valence excited state and the 3s-type Rydberg state of ethylene are presented and discussed in this paper, in conjunction with some of the AIMD results we obtained for these states.

H/D substitution makes difference in photochemical studies: the case of dimethylamine

  • Kim, So-Yeon;Lee, Jeongmook;Kim, Sang Kyu
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.63-66
    • /
    • 2015
  • When the molecule in the excited state is subject to prompt predissociation, it is quite nontrivial to obtain vibrational structure of the excited state in general. This applies to the case of photochemistry of dimethylamine (DMA:$(CH_3)_2NH$). When DMA is excited to its first electronically excited state ($S_1$), the N-H bond dissociation occurs promptly. Therefore, $S_1$ vibronic bands are homogeneously broadened to give extremely small ionization cross sections and heavily-congested spectral features, making infeasible any reasonable spectral assignment. Here, we demonstrate that the predissociation rate of the excited state could be significantly reduced by the NH/ND substitution to give the much better-resolved $S_1$ spectral feature, revealing the vibrational structure of the excited state of $DMA-d_1$ ($(CH_3)_2ND$) for the first time.

TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid

  • Jang, Sung-Woo;Jin, Sung-Il;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2343-2353
    • /
    • 2007
  • We report the application of time-dependent density functional theory (TDDFT) to the calculation of potential energy profile relevant to the excited state intramolecular proton transfer (ESIPT) processes in title molecules. The TDDFT single point energy calculations along the reaction path have been performed using the CIS optimized structure in the excited state. In addition to the Stokes shifts, the transition energies including absorption, fluorescence, and 0-0 transition are estimated from the TDDFT potential energy profiles along the proton transfer coordinate. The excited state TDDFT potential energy profile of SA and 3ASA resulted in very flat function of the OH distance in the range ROH = 1.0-1.6 A, in contrast to the relatively deep single minimum function in the ground state. Furthermore, we obtained very shallow double minima in the excited state potential energy profile of SA and 3ASA in contrast to the single minimum observed in the previous work. The change of potential energy profile along the reaction path induced by the substitution of electron donating groups (-NH2 and -OCH3) at different sites has been investigated. Substitution at para position with respect to the phenolic OH group showed strong suppression of excited state proton dislocation compared with unsubstitued SA, while substitution at ortho position hardly affected the shape of the ESIPT curve. The TDDFT results are discussed in comparison with those of CASPT2 method.

Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

  • Lee, Ingu;Lee, Sebok;Pang, Yoonsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.851-857
    • /
    • 2014
  • Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-${\beta}$-caroten-8'-al and 7',7'-dicyano-7'-apo-${\beta}$-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-${\beta}$-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the $S_2$ and $S_1$ excited states.

Multiconfiguration Molecular Mechanics Studies for the Potential Energy Surfaces of the Excited State Double Proton Transfer in the 1:1 7-Azaindole:H2O Complex

  • Han, Jeong-A;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.365-371
    • /
    • 2010
  • The multiconfiguration molecular mechanics (MCMM) algorithm was used to generate potential and vibrationally adiabatic energy surfaces for excited-state tautomerization in the 1:1 7-azaindole:$H_2O$ complex. Electronic structures and energies for reactant, product, transition state were computed at the CIS/6-31G(d,p) level of theory. The potential and vibrationally adiabatic energies along the reaction coordinate were generated step by step by using 16 high-level Shepard points, which were computed at the CIS/6-31G(d,p) level. This study shows that the MCMM method was applied successfully to make quite reasonable potential and adiabatic energy curves for the excited-state double proton transfer reaction. No stable intermediates are present in the potential energy curve along the reaction coordinate of the excited-state double proton transfer in the 1:1 7-azaindole:$H_2O$ complex, indicating that these two protons are transferred concertedly. The change in the bond distances along the reaction coordinate shows that two protons move very asynchronously to make an $H_3O^+$-like moiety at the transition state.

Estimation of Ground and Excited State Dipole Moments of Coumarin 450 by Solvatochromic Shift Method

  • Naik, L.R.;Math, N.N.
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.57-61
    • /
    • 2005
  • The ground and excited state dipole moments of Coumarin 450 (C 450) laser dye were measured at room temperature in several solvents of varying dipole moments. The ground state dipole moment (${\mu}_g$) is estimated by using the modified Onsagar model and the excited state dipole moments (${\mu}_e$) were estimated by the method of solvatochromism as well as by utilizing the microscopic solvent polarity parameter ($E^N_T$). Further, the deviation of some of the points from the linearity of the $E^N_T$ versus Stokes shift indicates the existence of specific type of solute-solvent interaction. The excited state dipole moment of C 450 were found to be higher than those of the ground state and is interpreted in terms of the resonance structure of the molecule. A reasonable agreement has been observed between the values obtained by the method of solvatochromism and modified Onsagar model. It is observed that, corresponding to cyclohexane solution, the fluorescence maxima shift towards the red region with increasing the polarity of the solvents, hence the transition involved are of ${\pi}-{\pi}^*$ type.

  • PDF

Photophysical Behaviors of Biphenylcarboxylic Acids in Various Solvents; Excited-State Geometry Change and Intramolecular Charge Transfer

  • Yoon Minjoong;Cho Dae Won;Lee Jae Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.613-620
    • /
    • 1992
  • The solvent-dependent photophysical properties of 2-biphenylcarboxylic acid (2BPCA) and 4-biphenylcarboxylic acid(4BPCA), which have a pre-twisted conformation in the ground state, have been investigated. The fluorescence spectra of 4BPCA show vibrational structure with a non-mirror image to the absorption spectra in nonpolar solvent while those of 2BPCA show no structure even in nonpolar solvents. As the solvent polarity increases, the fluorescence spectra become diffuse and broad with a strong red shift resulting in the large Stokes shift. The large fluorescence Stokes shift of BPCA's in polar solvent is also partially due to an intramolecular charge transfer (ICT) interaction in the excited state, as demonstrated by the large dipole moment in the excited state (7.6-10.6 D). The fluorescence decay behaviors of BPCA's (decay-times and their pre-exponential factors) also depend on solvent polarity in agreement with the solvent-dependent properties of the steady-state fluorecence. The data have been discussed in terms of change in the excited-state potential energy surface with respect to change of the dihedral angle of biphenyl moiety.

Theoretical Study of the Relationships between Excited State Geometry Changes and Emission Energies of Oxyluciferin

  • Li, Zhong-Wei;Min, Chun-Gang;Ren, Ai-Min;Guo, Jing-Fu;Goddard, John D.;Feng, Ji-Kang;Zuo, Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.895-900
    • /
    • 2010
  • In order to find a relationship between firefly luciferases structure and bioluminescence spectra, we focus on excited substrate geometries which may be affected by rigid luciferases. Density functional theory (DFT) and time dependent DFT (TDDFT) were employed. Changes in only six bond lengths of the excited substrate are important in determining the emission spectra. Analysis of these bonds suggests the mechanism whereby luciferases restrict more or less the excited substrate geometries and to produce multicolor bioluminescence.