Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.6.712

The Construction of Semi-diabatic Potential Energy Surfaces of Excited States for Use in Excited State AIMD Studies by the Equation-of-Motion Coupled-Cluster Method  

Baeck, Kyoung-Koo (Department of Chemistry, Kangnung National University)
Martinez, Todd J. (Department of Chemistry and The Beckman Institute, University of Illinois)
Publication Information
Abstract
The semi-diabatic potential energy surfaces (PESs) of the excited states of polyatomic molecules can be constructed for use in ab initio molecular dynamics (AIMD) studies by relying on the continuity of the electronic energy, oscillator strength, and spherical extent of an excited state along with first derivatives of these quantities as computed by using the equation-of-motion coupled-cluster (EOM-CC) method. The semidiabatic PESs of both the π → $π^*$ valence excited state and the 3s-type Rydberg state of ethylene are presented and discussed in this paper, in conjunction with some of the AIMD results we obtained for these states.
Keywords
Semi-diabatic PES; AIMD; Equation-of-motion coupled-culster; Excited state;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Baer, M. Chem. Phys. Lett. 1975, 35, 112.   DOI   ScienceOn
2 Purvis III, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.   DOI
3 Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029.   DOI   ScienceOn
4 Salem, L.; Bruckmann, P. Nature 1975, 258, 526.   DOI   ScienceOn
5 Ben-Nun, M.; Martinez, T. J. Chem. Phys. 2000, 259, 237.   DOI   ScienceOn
6 Lengsfield III, B. H.; Saxe, P.; Yarkony, D. R. J. Chem. Phys. 1984, 81, 4549.   DOI
7 Krylov, A. I. J. Chem. Phys. 2000, 113, 6052.   DOI   ScienceOn
8 Hirao, K.; Nakatsuji, H. J. Comput. Phys. 1982, 45, 246.   DOI   ScienceOn
9 Bartlett, R. J. J. Phys. Chem. 1989, 93, 1697.   DOI
10 Baeck, K. K. J. Chem. Phys. 2000, 112, 1.   DOI   ScienceOn
11 Ben-Nun, M.; Martinez, T. J. Adv. Chem. Phys. 2002, 121, 439.   DOI
12 Stanton, J. F.; Gauss, J. J. Chem. Phys. 1994, 100, 8840.
13 Verlet, L. Phys. Rev. 1967, 165, 201.   DOI
14 Brown, R. C.; Heller, E. J. J. Chem. Phys. 1981, 75, 186.   DOI
15 Baeck, K. K.; Jeon, S. I. Bull. Korean Chem. Soc. 2000, 21, 720.
16 Petrongolo, C.; Hirsch, G.; Buenker, R. J. Mol. Phys. 1990, 70, 825.   DOI   ScienceOn
17 Wigner, E. Phys. Rev. 1932, 40, 749.   DOI
18 Mead, C. A.; Truhlar, D. G. J. Chem. Phys. 1982, 77, 6090.   DOI
19 Peric, M.; Peyerimhoff, S. D.; Buenker, R. J. Z. Physik D 1992, 24, 177.   DOI
20 Davidson, E. R. J. Comput. Phys. 1975, 17, 87.   DOI   ScienceOn
21 Sension, R. J.; Hudson, B. S. J. Chem. Phys. 1989, 90, 1377.   DOI
22 Ohmine, I. J. Chem. Phys. 1985, 83, 2348.   DOI
23 Baeck, K. K.; Ben-Num, M.; Martinez, T. J. Chem. Phys. Lett.2003, in press.
24 Saxe, P.; Yarkony, D. R. J. Chem. Phys. 1986, 86, 321.   DOI
25 Ohmine, I. J. Chem. Phys. 1985, 83, 2348.   DOI
26 Werner, H.-J.; Meyer, W. J. Chem. Phys. 1981, 74, 5802.   DOI
27 Olsen, J.; Jorgensen, P. In Modern Electronic Structure Theory, Part I; Yarkony, D. R., Ed.; World Scientific: Singapore, 1995.
28 Stanton, J. F. J. Chem. Phys. 1993, 99, 4695.
29 Advanced Concepts in Electronic Structure Theory (ACES-II) - A product of the University of Florida, Quantum Theory Project, developed by Bartlett, R. J. et al.