Browse > Article
http://dx.doi.org/10.5857/RCP.2015.4.3.63

H/D substitution makes difference in photochemical studies: the case of dimethylamine  

Kim, So-Yeon (Department of chemistry, KAIST)
Lee, Jeongmook (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Kim, Sang Kyu (Department of chemistry, KAIST)
Publication Information
Rapid Communication in Photoscience / v.4, no.3, 2015 , pp. 63-66 More about this Journal
Abstract
When the molecule in the excited state is subject to prompt predissociation, it is quite nontrivial to obtain vibrational structure of the excited state in general. This applies to the case of photochemistry of dimethylamine (DMA:$(CH_3)_2NH$). When DMA is excited to its first electronically excited state ($S_1$), the N-H bond dissociation occurs promptly. Therefore, $S_1$ vibronic bands are homogeneously broadened to give extremely small ionization cross sections and heavily-congested spectral features, making infeasible any reasonable spectral assignment. Here, we demonstrate that the predissociation rate of the excited state could be significantly reduced by the NH/ND substitution to give the much better-resolved $S_1$ spectral feature, revealing the vibrational structure of the excited state of $DMA-d_1$ ($(CH_3)_2ND$) for the first time.
Keywords
Dimethylamine; REMPI; photoelectron imaging; predissociation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Tannenbaum, E. M. Corrin, and A. J. Harrison, J. Chem. Phys. 1953, 21, 311-318.   DOI
2 D. P. Taylor and E. R. Bernstein, J. Chem. Phys. 1995, 103, 10453-10464.   DOI
3 D. P. Taylor, C. F. Dion, and E. R. Bernstein, J. Chem. Phys. 1997, 106, 3512-3518.   DOI   ScienceOn
4 S. J. Baek, K. -W. Choi, Y. S. Choi, and S. K. Kim, J. Chem. Phys. 2003, 118, 11026-11039.   DOI   ScienceOn
5 M. H. Park, K. W. Choi, S. Choi, S. K. Kim, and Y. S. Choi, J. Chem. Phys. 2006, 125, 084311.   DOI   ScienceOn
6 D. S. Ahn, J. Lee, J.-M. Choi, K.-S. Lee, S. J. Baek, K. Lee, K.-K. Baeck and S. K. Kim, J. Chem. Phys. 2008, 128, 224305.   DOI   ScienceOn
7 D. S. Ahn, J. Lee, Y. C. Park, Y. S. Lee and S. K. Kim, J. Chem. Phys. 2012, 136, 024306.   DOI   ScienceOn
8 A. Golan, S. Rosenwaks and I. Bar, J. Chem. Phys. 2006, 125, 151103.   DOI   ScienceOn
9 R. Marom, U. Zecharia, S. Rosenwaks and I. Bar, J. Chem. Phys. 2008, 128, 154319.   DOI   ScienceOn
10 R. Marom, C. Levi, T. Weiss, S. Rosenwaks, Y. Zeiri, R. Kosloff and I. Bar, J. Phys. Chem. A. 2010, 114, 9623-9627.   DOI   ScienceOn
11 J. O. Thomas, K. E. Lower and C. Murray, J. Phys. Chem. A. 2014, 118, 9844-9852.
12 M. Epshtein, A. Portnov and I. Bar, Phys. Chem. Chem. Phys. 2015, 17, 19607-19615   DOI
13 J. Wei, L. Fang, B. Zhang, W. -Y. Guo, L. -D. Zhang, S. -D. Zhang, and J. -Y. Cai, Chin. Phys. Soc. 1997, 6, 725-730.
14 W. Li, S. D. Chambreau, S. A. Lahankar, A. G. Suits, Rev. Sci. Instrum. 2005, 76, 063106.   DOI   ScienceOn
15 V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 2002, 73, 2634.   DOI   ScienceOn
16 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
17 I. Pugliesi, K. Muller-Dethlefs, J. Phys. Chem. A. 2006, 110, 4657-4667.
18 All Franck-Condon simulations have been carried out using FCLabII Version 2009a, a computational package developed by C. Schriever, M.C.R. Cockett and I. Pugliesi. The latest information on program updates, a basic introduction to Franck-Condon simulations and a free download of the software can be found at http://www.fclab2.net/.