• 제목/요약/키워드: Excitation source

검색결과 311건 처리시간 0.025초

Enhanced Magnetic Properties of BiFe1-$_xNi_xO_3$

  • Yoo, Y.J.;Hwang, J.S.;Park, J.S.;Kang, J.H.;Lee, B.W.;Lee, S.J.;Kim, K.W.;Lee, Y.P.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.183-183
    • /
    • 2011
  • Multiferroic materials have been widely studied in recent years, because of their abundant physics and potential applications in the sensors, data storage, and spintronics. $BiFeO_3$ is one of the well-known single-phase multiferroic materials with $ABO_3$ structure and G-type antiferromagnetic behavior below the Neel temperature $T_N$ ~ 643 K, but the ferroelectric behavior below the Curie temperature $T_c$~1,103 K. In this study, the $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramics were prepared by solid-state reaction and rapid sintering with high-purity $Bi_2O_32$, $Fe_3O_4$ and NiO powders. The powders of stoichiometric proportions were mixed, as in the previous investigations, and calcined at 450$^{\circ}C$ for $BiFe_{1-x}Ni_xO_3$ for 24 h. The obtained powders were grinded, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, which has been heated up to 800$^{\circ}C$ and sintered in air for 20 min. The sintered disks were taken out from the oven and cooled to room temperature within several min. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu K${\alpha}$ radiation. The Raman measurements were carried out by employing a hand-made Raman spectrometer with 514.5-nm-excitation $Ar^+$ laser source under air ambient condition on a focused area of 1-${\mu}m$ diameter. The field-dependent magnetization measurements were performed with a superconducting quantum-interference-device magnetometer.

  • PDF

동일 형상의 서로 다른 크기를 가지는 2차원 4각 탱크의 슬로싱 충격 압력에 관한 실험적 연구 (An Experimental Study on Sloshing Impact Pressures with Two Identically Shaped Rectangular 2-Dimensional Model Tanks with Different Sizes)

  • 황윤식;정준형;김대웅;류민철
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.16-28
    • /
    • 2008
  • Recent growth in LNG market has led dramatic increase in new buildings of LNG carriers and several large LNG carriers are now being constructed by shipbuilders in Korea. Large size LNG carriers has brought keen concerns on the issue regarding safety of cargo containment systems and sloshing impact load which is the critical source of loads on the membrane type containment systems. Up to the present, the best way to properly assess sloshing impact pressures on surrounding walls is a model testing for wide-ranged excitation conditions. These impact pressures obtained from model tests sometimes need to be interpreted to full-scale values and in the near future this necessity will be strengthened for more rigorous and direct safety assessment of LNG cargo containment system. In this paper, a basic experimental study is carried out with two different sized, 2D identically shaped model tanks excited in simple translational motions. Relationships between pressures of different sized model tanks are investigated Model tanks are filled with fresh water and equipped with same sized pressure sensors.

  • PDF

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

Enhanced Hydrogen Production from Methanol/Water Photo-Splitting in TiO2 Including Pd Component

  • Kwak, Byeong-Sub;Chae, Jin-Ho;Kim, Ji-Yeon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1047-1053
    • /
    • 2009
  • The future use of hydrogen as an energy source is expected to increase on account of its environmentally friendliness. In order to enhance the production of hydrogen, Pd ions (0.01, 0.05, 0.1, and 0.5 mol%) were incorporated $TiO_2$ (Pd-$TiO_2$) and used as a photocatalyst. The UV-visible absorbance decreased with increasing level of palladium incorporation without a wavelength shift. Although all the absorption plots showed excitation characteristics, there was an asymmetric tail observed towards a higher wavelength caused by scattering. However, the intensity of the photoluminescence (PL) curves of Pd-$TiO_2$ was smaller, with the smallest case being observed at 0.1 and 0.5 mol% Pd-$TiO_2$, which was attributedto recombination between the excited electrons and holes. Based on these optical characteristics, the evolution of $H_2$ from methanol/water (1:1) photo-splitting over Pd-$TiO_2$ in the liquid system was enhanced, compared with that over pure $TiO_2$. In particular, 2.4 mL of $H_2$ gas was produced after 8 h when 0.5 g of a 1.0 mol% Pd-$TiO_2$ catalyst was used. $H_2$ was stably evolved even after 28 h without catalytic deactivation, and the amount of $H_2$ produced reached 14.5 mL after 28 h. This is in contrast to the case of the Pd 0.1 mol% impregnated $TiO_2$ of $H_2$ evolution of 17.5 mL due to the more decreasedelectron-hole recombination.

고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구 (Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction)

  • 유현희;;원형일;원창환
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

전기집진기의 직렬 및 병렬식 배열에 따른 효율적인 진동 탈진에 대한 연구 (Research for Effective Vibrational Rapping Performance of Multiple Electrostatic Precipitators in Series and Parallel Arrangements)

  • 최지현;김진호
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4136-4141
    • /
    • 2013
  • 전자기 진동 가진기를 적용한 전기 집진기의 효과적인 탈진 여부를 판단할 수 있는 기준은 집진기내 집진판들의 진동 가속도이다. 이러한 진동 가속도는 외부로부터의 가진 주파수와 시스템의 고유주파수의 일치로 인하여 공진이 일어날 때 간헐적으로 최대치를 보이며 효율적인 탈진성능을 기대할 수 있다. 본 연구에서는 한대의 전자기 진동 가진기를 이용하는 단일 객체를 대상으로 한 관점에서 더 나아가, 실제 현장에서 복수의 전기집진탈진기가 설치됨을 고려하여 진동 탈진기의 설치방식에 따라 시스템을 모델링 하였다. 이러한 직렬 및 병렬회로로 연결된 가진기를 적용한 시스템을 대상으로 진동 가속도 계측 실험을 수행하여 직렬 및 병렬식 연결에 따른 진동 가속도의 차이를 비교함으로써 가진기의 배열 방식과 그에 따른 기대 탈진 성능 및 소비전력의 유효성을 검증하였다. 최종적으로 직렬 배열형 모듈이 증가할수록 선형적으로 필요전류량이 증가할 것으로 예상하였으나 급격한 감소나 (6.9% ~ 37.6%) 증가를 (5% ~ 45%) 보여주었다. 단독의 가진기가 사용된 병렬 배열보다, 2대의 가진기가 사용되고 그 전기회로의 연결이 병렬일 때 동일한 전류가 인가되었음에도 약 11.64% 의 가속도 감소 현상을 보였다. 2대의 가진기를 사용하고 입력전류의 값을 소비 전력의 관점에서 동일하게 보정하였을 경우 약 16.80 % 의 가속도 증가 현상을 확인하였다.

V/S/TSIUVC 스위칭을 이용한 음성부호화 방식에 관한 연구 (A study on Speech Coding Method using V/S/TSIUVC Switching)

  • 이시우
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1180-1184
    • /
    • 2006
  • 유성음원과 무성음원을 사용하는 음성부호화 방식에 있어서 모음과 무성자음이 있는 프레임에서 음질저하 현상이 나타난다. 본 논문에서는 음질을 개선하기 위해 V/S/TSIUVC 스위칭과 TSIUVC 근사합성 방법을 사용한 새로운 멀티펄스 음성부호화 방식을 제시한다. TSIUVC는 영교차율과 개별피치 펄스에 의하여 추출되며, TSIUVC의 추출율은 여자와 남자음성에서 각각 91%와 96.2%를 얻었다. 여기에서 중요한 사실은 양질의 TSIUVC 합성 파형을 얻기 위해서는 0.547kHz 이하와 2.813kHz 이상의 주파수 정보를 사용하여야 한다. V/UV를 이용한 MPC와 V/S/TSIUVC를 이용한 FBD-MPC의 비교평가를 하였다. 실험결과, FBD-MPC의 음질이 MPC의 음질에 비하여 상당히 개선되었음을 알 수 있었다.

  • PDF

현실감있는 입체음향 생성을 위한 머리전달함수의 개선 (Improvement of Head Related Transfer Function to Create Realistic 3D Sound)

  • 구교식;차형태
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.381-386
    • /
    • 2008
  • 최근 게임, 멀티미디어 콘텐츠, 가상현실 등을 제공하는 멀티미디어 장치에서 2개의 스피커나 헤드폰을 이용하여 3차원 입체 음향효과를 내고자 하는 가상 입체음향 기법에 관한 연구가 많이 이루어지고 있다. 가상 입체음향 기법 중 가장 대표적인 것으로는 소리가 음원으로부터 청자의 두 귀에 이르는 정보를 포함하고 있는 머리전달함수를 사용하는 방법이 있다. 그러나 이 방법은 혼돈원추 상에서 음상정위의 혼돈을 주게 됨으로서 입체감이 저하된다는 단점이 있다. 본 논문에서는 인간의 청각특성에 따른 여기에너지를 이용하여 현실감있는 입체음향을 생성하는 알고리즘을 제안하고자 한다. 서로 대칭되는 각 머리전달함수의 여기에너지를 계산하고 각 bark 대역에 따른 비율을 추출한 후 앞방향에 해당하는 머리전달함수의 저주파 영역을 보상해줌으로서 스펙트럼 특성을 부각시키는 새로운 방법을 제안하였으며 청감테스트를 통하여 제안한 방식이 기존의 방법보다 방향감을 개선시킴을 확인할 수 있었다.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.