• 제목/요약/키워드: Excitation Point

검색결과 238건 처리시간 0.026초

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

간접 힘 측정 방법과 가상 역행렬을 이용한 힘 예측 (Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique)

  • 안병하;심재술
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.43-50
    • /
    • 2002
  • In the design of structure, the forces acting on tai structure are key parameter fur noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. So, it is necessary to find out Indirect force evaluation method. In this paper, forces have been measured with In-situ vibration responses and system information. And, three existing techniques of indirect force measurement, vita. direct inverse. principal component analysis and regularization have been compared. This paper shows that multi-vibration responses are essential for talc precise estimation of the forces. To check these conditions, rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It alas also been obtained that relatively higher force is transmitted through three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate.

환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어 (Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing)

  • 최정식;고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제25권10호
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Indirect force 측정 방법과 Pseudo-역행렬을 이용한 정밀한 Force 예측 (Precise Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique)

  • 심재술;안병하;하종훈;정현출
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.564-567
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In this paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those conditions, Rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It has also been obtained that relatively higher force is transmitted though three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

Analytical Surge Behaviors in Systems of a Single-stage Axial Flow Compressor and Flow-paths

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.1-16
    • /
    • 2016
  • Behaviors of surges appearing near the stall stagnation boundaries in various fashions in systems of a single-stage compressor and flow-path systems were studied analytically and were tried to put to order. Deep surges, which enclose the stall point in the pressure-mass flow plane, tend to have either near-resonant surge frequencies or subharmonic ones. The subharmonic surge is a multiple-loop one containing, for example, in a (1/2) subharmonic one, a deep surge loop and a mild surge loop, the latter of which does not enclose the stall point, staying only within the stalled zone. Both loops have nearly equal time periods, respectively, resulting in a (1/2) subharmonic surge frequency as a whole. The subharmonic surges are found to appear in a narrow zone neighboring the stall stagnation boundary. In other words, they tend to appear in the final stage of the stall stagnation process. It should be emphasized further that the stall stagnation initiates fundamentally at the situation where a volume-modified reduced resonant-surge frequency becomes coincident with that for the stagnation boundary conditions, where the reduced frequency is defined by the acoustical resonance frequency in the flow-path system, the delivery flow-path length and the compressor tip speed, modified by the sectional area ratio and the effect of the stalling pressure ratio. The real surge frequency turns from the resonant frequency to either near-resonant one or subharmonic one, and finally to stagnation condition, for the large-amplitude conditions, caused by the non-linear self-excitation mechanism of the surge.

그림자 영향을 고려한 PV MIC 시스템의 새로운 MPPT 제어 (A Novel MPPT Control of PV MIC System Considering the Shaded Effect)

  • 최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the new maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. Particularly, MIC system is very sensitive to the shadow influence because the capacity is very small. In order to increase an output and efficiency of the solar power generation, the maximum power point(MPP) obeying control are necessary. Conventional perturbation and observation(PO) and Incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the new control algorithm of the multi-level in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved. through the output error response characteristics.

프로펠러 날개의 진동특성에 대한 실험적 연구 (Experimental Method for the Identification of the Propeller Blade Vibration Characteristics)

  • 이현엽;김영중;노인식;이창섭
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.136-141
    • /
    • 2005
  • An experiment method has been developed to analyse the vibration characteristics of marine propeller blades, and vibration tests have been carried out on the model scale propeller in air and in water. The driving point transfer function(acceleration/excitation force) has been measured and modified by compensating the attachment effect of the impedance head. The measured natural frequencies in air have been compared with the theoretical results by an in-house FEM code PROSTEC. The added masses have been derived by comparing the measured natural frequencies in air and in water, and the results have been compared to the results using existing formula based on experience.

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1331-1344
    • /
    • 2021
  • This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.

TMS320C542를 이용한 2.4kbps MELP 보코더의 실시간 구현 (Real-time Implementation of 2.4kbps MELP vocoder using the TMS320C542)

  • 박영호;정찬중;배명진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.145-148
    • /
    • 2000
  • 본 논문은 범용 16bit Fixed-point DSP를 이용한 새로운 미국 DoD 2.4kbps MELP(Mixed Excitation Linear Predictive)보코더의 실시간 구현에 관한 것이다. 구현된 MELP보코더는 ROM 32.6kword, RAM 12.2kword를 가지며 40MIPS DSP에서 약 29MIPS를 필요로 하였다. 출력된 파형은 C simulator 와 Bit Exact한 출력 결과를 보여주었다. 실시간 구현된 MELP를 동일전송율의 2.4kbps AMBE와 음질 비교한 결과 AME보다는 MOS 0.2 음질 이 떨어졌다

  • PDF