• Title/Summary/Keyword: Excessive Rainfall

Search Result 69, Processing Time 0.019 seconds

Assessing Groundwater Vulnerability Using DRASTIC Method and Groundwater Quality in Changwon City (DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Moo-Jin;Kim In-Soo;Hwang Han-Seok
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.631-645
    • /
    • 2004
  • This study assesses groundwater vulnerability to contaminants in industrial and residential/commercial areas of the city of Changwon, using DRASTIC technique and groundwater data. The DRASTIC technique was originally applied to situations in which the contamination sources are at the ground surface, and the contaminants flow into the groundwater with infiltration of rainfall. Mostly the industrial area has higher DRASTIC indices than the residential/commercial area. However, a part of the residential/commercial area having much groundwater production and great drawdown is more contaminated in groundwater than other industrial and the residential/commercial areas even if it has lowest DRASTIC indices in the study area. It indicates that groundwater contamination in urban areas can be closely related to excessive pumping resulting in a lowering of the water level. The correlation coefficient between minimum DRASTIC indices and the degree of poor water quality for 10 districts is as low as 0.40. On the other hand, the correlation coefficients between minimum DRASTIC indices and the groundwater discharge rate, and between minimum DRASTIC indices and well distribution density per unit area are 0.70 and 0.87, respectively. Thus, to evaluate the potential of groundwater contamination in urban areas, it is necessary to consider other human-made factors such as groundwater withdrawal rate and well distribution density per unit area as well as the existing seven DRASTIC factors.

Outbreak of Rice Panicle Blast in Southern Provinces of Korea in 2014 (우리나라 남부지방에서의 2014년 벼 이삭도열병 대발생)

  • Kang, Wee Soo;Seo, Myung-Chul;Hong, Seong Jun;Lee, Kyong Jae;Lee, Yong Hwan
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.196-204
    • /
    • 2019
  • Rice panicle blast occurred severely in southern provinces of Korea in 2014. The proportion of panicle blast incidence area to cultivated area of rice were 11.0% and 14.6% in Jeollanam-do and Gyeongsangnam-do, respectively. To identify the causal factors of the outbreak, we investigated weather conditions in August, amount of cultivated area of mainly grown cultivars, and nitrogen contents in plants with different disease incidences in 2014. 'Saenuri,' 'Ilmibyeo,' 'Unkwang,' 'Dongjin 1 ho,' 'Nampyeongbyeo,' and 'Hwangkeumnuri' were mainly grown cultivars. Monthly average of daily air temperature in August 2014 was 3.2℃ and 3.1℃ less than 2018 in Haenam and Miryang, respectively. Rainfall in August 2014 was 70.0% and 42.0% greater than 2018 in Haenam and Miryang, respectively. The numbers of blast warning days in August calculated nationwide using a forecast model for blast infection were higher in 2014 than in 2018, and they were in high level throughout the country in 2014. Nitrogen contents in plant samples from high-incidence plots were significantly higher than those from low-incidence plots. Consequently, excessive use of nitrogen fertilizers was the main factor for the disease outbreak at the level of specific farms, in addition to the collective cultivation of susceptible cultivar, low temperatures and frequent rainfalls in August.

Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops (고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석)

  • Heo, Sunggu;Jun, ManSig;Park, Sanghun;Kim, Ki-sung;Kang, SungKeun;Ok, YongSik;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.

Oceanographic Conditions in Relation to Laver Production in Kwangyang Bay, Korea (광양만의 김 생산과 양식장환경과의 관계에 대하여)

  • HONG Jae-Sang;SONG Choon Bok;KIM Nam-Gil;KIM Jong Man;HUH Hyung Tack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.3
    • /
    • pp.237-247
    • /
    • 1987
  • The present study deals with the physico-chemical and meteorological conditions in Porphyra-cultivation ground to determine the relationship between laver production and its environmental factors in Kwangyang Bay from January to April in 1986. As a result, major environmental factors which are thought to have a great influence upon the poor harvest during the cultivation period are as follows; 1) the excessive rainfall in the beginning of cultivation period 2) the accumulation of suspended matters on the thallus of laver 3) the decrease of current velocity and the stagnation of the water in the cultivation ground.

  • PDF

Optimal Reservour Operation for Flood Control Using a Hybrid Approach (Case Study: Chungju Multipurpose Reservoir in Korea) (복합 모델링 기법을 이용한 홍수시 저수지 최적 운영 (사례 연구 : 충주 다목적 저수지))

  • Lee, Han-Gu;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.727-739
    • /
    • 1998
  • The main objectives o reservoir optimal operation can be described as follows : maximization of the benefits through optimal allocation of the limited water resources for various purpose; minimization of t도 costs by the flood damage in potential damaging regions and risk of dam failure, etc. through safe drainage of a bulky volume of excessive water by a proper reservoir operation. Reviewing the past research works related to reservoir operation, we can find that the study on the matter of the former has been extensively carried out in last decades rather than the matter of the latter. This study is focused on developing a methodology of optimal reservoir operation for flood control, and a case study is performed on the Chungju multipurpose reservoir in Korea. The final goal of the study is to establish a reservoir optimal operation system which can search optimal policy to compromise two conflicting objectives: downstream flood damage and dam safety-upstream flood damage. In order to reach the final goal of the study, the following items were studied : (1)validation of hydrological data using HYMOS: (2)establishment of a downstream flood routing model coupling a rainfall-runoff model and SOBEK system for 1-D hydrodynamic flood routing; (3)replication of a flood damage estimation model by a neural network; (4)development of an integrated reservoir optimization module for an optimal operation policy.

  • PDF

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Applicability Evaluation of Flood Inundation Analysis using Quadtree Grid-based Model (쿼드트리 격자기반 모형의 홍수범람해석 적용성 평가)

  • Lee, Dae Eop;An, Hyun Uk;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2013
  • Lately, intensity and frequency of natural disasters such as flood are increasing because of abnormal climate. Casualties and property damages due to large-scale floods such as Typhoon Rusa in 2002 and Typhoon Maemi in 2003 rapidly increased, and these show the limits of the existing disaster prevention measures and flood forecasting systems regarding irregular climate changes. In order to efficiently respond to extraordinary flood, it is important to provide effective countermeasures through an inundation model that can accurately simulate flood inundation patterns. However, the existing flood inundation analysis model has problems such as excessive take of analysis time and accuracy of the analyzed results. Therefore, this study conducted a flood inundation analysis by using the Gerris flow solver that uses quadtree grid, targeting the Baeksan Levee in the Nakdong River Basin that collapsed because of a concentrated torrential rainfall in August, 2002. Through comparisons with the FLUMEN model that uses unstructured grid among the existing flood inundation models and the actual flooded areas, it determined the applicability and efficiency of the quadtree grid-based flood inundation model of the Gerris flow solver.

Australia's Water Management Policies and Implications in Response to Climate Change (기후변화에 대응한 호주의 물관리 정책과 시사점)

  • Lee, Jong Wook;Park, Tae Sun;Lee, Seung Yeon;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.1-12
    • /
    • 2020
  • Recently, as the extreme drought continued due to the reckless development and the dramatical climate change, national concern about the water management issues has been increased rapidly around the world, especially in Korea. Meanwhile, it is necessary to analyze and review the related cases in Australia, where they have developed the consistently, eco-friendly and systematically management from the national level, which is similar to that of Korea in difficult circumstances. Australia has been suffered by repeated droughts and floods due to low rainfall and dryness, and water disputes were begun with immigrant settlement in the 1890s. In the early days, water management agreements for efficient distribution of water resources, water use regulation programs, and federal water laws were enacted, and now the established water management system in which development and conservation are assumed to be well balanced. In Korea, however, in the past, the Ministry of Environment was responsible for water quality issues while the quantity was managed by the Ministry of Land, Infrastructure and Transport, and the main local departments for water management were divided. Therefore, it was difficult to manage the integrated water management due to problems such as duplicated works, excessive investments, and inefficiency. To resolve this situation, in 2018, all water management functions were unified, such as enacting the fundamental water-related laws, thereby laying the foundation for the integrated water management system for each basin. From 2019, even the integrated water management system was implemented, we are promoting the effect of sustainable water resource management. In order to establish a management policy for efficient and eco-friendly water management, the IWRM (Integrated Water Resource Management) of Australia, which has been devised in various ways, was analyzed and compared with the present situations and cases occurred in Korea, and the implications from this study would be suggested the future of IWRM in Korea.

Correction of the Ground Subsidence Risk Ratings during Open Cut Excavation (개착식 굴착공사 중 지반함몰 위험등급 분류시트의 등급 보정에 관한 연구)

  • Shin, Sang-Sik;Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.135-148
    • /
    • 2021
  • Ground subsidence risk ratings obtained from the site investigation during pre-excavation stages could be changed depending on the parameters revealed during construction activities. A method of correcting the pre-excavation ground subsidence risk ratings based on the site conditions observed in the field is suggested in this study. The elevation of groundwater table during the excavation may be different from the predicted value depending on the application of waterproofing methods and construction conditions. The drastic drawdown of groundwater table during the excavation could cause ground subsidence due to soil volume decrease related to consolidation or compression of the ground, whereas the rising of groundwater table caused by the intense rainfall may result in a high potential for ground subsidence due to heaving or boiling of the excavation bottom. Excessive displacements of retaining walls or ground settlements may cause ground subsidence, which also results in a high risk of ground subsidence caused by the destruction of buried pipelines. Reevaluation of ground subsidence risk ratings is suggested considering the fluctuation of groundwater table, condition of groundwater leakage, measured ground displacements, and soil types. Finally, the ground subsidence risk rating system is improved for better evaluation by using 12 factors in 5 categories.

Effect of Fertilizer Deep Placement on Rice and Soybean Yield Using Newly Developed Device for Deep Fertilization (신개발 심층시비장치를 이용한 심층시비가 벼와 콩 수량에 미치는 영향)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • Nitrogen fertilizer is an essential macronutrient that requires repeated input for crop cultivation. Excessive use of nitrogen fertilizers can adversely affect the environment by discharging NH3, NO, and N2O into the air and leaching into surrounding water systems through rainfall runoff. Therefore, it is necessary to develop a technology that reduces the amount of nitrogen fertilizer used without compromising crop yields. Fertilizer deep placement could be a technology employed to increase the efficiency of nitrogen fertilizer use. In this study, a deep fertilization device that can be coupled to a tractor and used to inject fertilizer into the soil was developed. The deep fertilization device consisted of a tractor attachment part, fertilizer amount control and supply part, and an underground fertilizer input part. The fertilization depth was designed to be adjustable from the soil surface down to a depth of 40 cm in the soil. This device injected fertilizer at a speed of 2,000 m2/hr to a depth of 25 to 30 cm through an underground fertilizer injection pipe while being attached to and towed by a 62-horsepower agricultural tractor. Furthermore, it had no difficulty in employing various fertilizers currently utilized in agricultural fields, and it operated well. It could also perform fertilization and plowing work, thereby further simplifying agricultural labor. In this study, a newly developed device was used to investigate the effects of deep fertilizer placement (FDP) compared to those with urea surface broadcasting, in terms of rice and soybean grain yields. FDP increased the number of rice grains, resulting in an average improvement of 9% in rice yields across three regions. It also increased the number of soybean pods, resulting in an average increase of 23% in soybean yields across the three regions. The results of this study suggest that the newly developed deep fertilization device can efficiently and rapidly inject fertilizer into the soil at depths of 25 to 30 cm. This fertilizer deep placement strategy will be an effective fertilizer application method used to increase rice and soybean yields, in addition to reducing nitrogen fertilizer use, under conventional rice and soybean cultivation conditions.