• Title/Summary/Keyword: Excavation procedure

Search Result 72, Processing Time 0.028 seconds

Sequential Analysis of Adjacent Ground Behaviors Caused by Deep Excavations (굴착 공정별 주변지반 거동 분석)

  • Seo Min-Woo;Seok Jeong-Woo;Yang Ku-Seung;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.19-28
    • /
    • 2006
  • Long-term field observations were performed in three excavation sites in order to investigate the displacement behavior of adjacent ground during overall excavation procedure, where the depths of deep excavations were 15 m$\∼$29 m. In this study, ground settlements and lateral displacements of braced wall measured during installation of retaining wall and removal of bracing were specially focused to evaluate the behavior quantitatively according to three-stage-divided procedure, i.e. pre-excavation, main excavation, and removal of bracing. Through field measurements on three excavation sites, lateral displacements induced during removal of bracing are approximate to 40$\%$ of the amount found during main excavation stage and additional adjacent ground deformation during post-excavation procedure ranges from 18$\%$ to 33$\%$ of that found during main excavation stage, based on the settlement volume. In conclusion, it was quantitatively identified in this study that the deformations of adjacent ground during pre- and post-excavation stage were not negligible.

FINITE ELEMENT ANALYSIS OF FLUID-SATURATED GROUND SYSTEM UNDER INCREMENTAL EXCAVATION (침수지반의 단계적 굴착해석)

  • 구정회;홍순조;김문겸;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.207-212
    • /
    • 1993
  • In the construction of underground structures, it is critical to accurately predict the ground deformations during excavation. In this paper, a finite element procedure for the computation of solid displacement and fluid pore pressure during incremental excavation is presented based on Biot's theory. The numerical formulation is done using the virtual work principle. The proposed procedure is applied to some example problems with different excavation rates and permeabilities.

  • PDF

Building Response to Excavation-Induced Ground Movements and Damage Estimation (굴착유발 지반변위에 의한 인접구조물의 거동 및 손상도 예측)

  • Son, Moo-Rak;Cording, E.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.249-256
    • /
    • 2006
  • New infrastructures and buildings are being constructed increasingly in congested urban areas, and excavation-induced ground movements often cause distortion and damage to adjacent buildings. Protection of adjacent structures occupies a major part of the cost, schedule and third-party impacts of urban development. To limit damage or mitigate their effects on nearby structures, it is highly important to understand the whole mechanism from excavation to building damage, and to estimate building damage reliably before excavation and provide appropriate measures. This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions for ground and structures, and a building damage criterion, which is based on the state of strain, is proposed. The criterion is compared with other existing damage estimation criteria and a procedure is finally provided for estimating building damage due to excavation-induced ground movements.

  • PDF

특정 사례터널 해석 결과 및 평가

  • Lee, Seung-Rae;O, Se-Bung;Baek, Gyu-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.123-132
    • /
    • 1991
  • The GEOKST program was used to solve the tunnel example problem. The package can solve such geotechnical problem as excavation, embankment, foundations, etc., in which the soil can be modeled by various elastoplastic geomaterial models. The main objective was to consider the effects of excavation depth to the face of the tunnel on the stability of the ground and support system. Depended on the strength of the ground materials, the limit excavation depth without any support system could be established by analyzing three-dimensional excavation problem. In this given example problem, the strengths of the ground materials were enough for the stability of the tunnel without any support system up to fairly deep excavation and the maximum tunnel section displacement was stabilized as the excavation proceed. The asymptotic value was approximately the same as that of the plane strain analysis. Thus, assuming the plain strain condition and simulation the actual excavation procedure, the maximum tunnel section displacement was caculated after final step. The maximum calculated displacement occured at the top section of the tunnel geometry and was about 8mm.

  • PDF

Significance of Ground Water Movements in the Numerical Modelling of Tunnelling (터널해석에 있어 지하수 거동의 중요성)

  • 신종호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.257-264
    • /
    • 2003
  • Tunnelling in water bearing soils influences the ground water regime. It has been indicated in the literature that the existence of ground water above a tunnel influences tunnel stability and the settlement profile. Only limited research, however, has been done on ground water movements around tunnels and their influence on tunnel performance. Time dependent soil behaviour can be caused by the changes of pore water pressure and/or the viscous properties of soil(creep) under the stress change resulting from the advance of the tunnel face. De Moor(1989) demonstrated that the time dependent deformations due to tunnelling are mainly the results of pore pressure dissipation and should be interpreted in terms of effective stress changes. Drainage into tunnels is governed by the permeability of the soil, the length of the drainage path and the hydraulic boundary conditions. The potential effect of lime dependent settlement in a shallow tunnel is likely to occur rapidly due to the short drainage path and possibly high coefficient of consolidation. Existing 2D modelling methods are not applicable to these tunnelling problems, as it is difficult to define empirical parameters. In this paper the time-based 2D modelling method is adopted to account for the three dimensional effect and time dependent behaviour during tunnel construction. The effect of coupling between the unloading procedure and consolidation during excavation is profoundly investigated with the method. It is pointed out that realistic modelling can be achieved by defining a proper permeability at the excavation boundary and prescribing appropriate time for excavation Some guidelines for the numerical modelling of drained and undrained excavation has been suggested using characteristic time factor. It is highlighted that certain range of the factor shows combined effect between the unloading procedure due to excavation and consolidation during construction.

  • PDF

Prediction and Field Measurement on Behaviour of Soft Clay during Deep Excavation (연약점성토지반에서의 깊은굴착에 따른 지반거동의 예측과 현장계측)

  • 정성교;조기영;정은용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.111-124
    • /
    • 1999
  • When deep excavation adjacent to an existing structure is performed, it is very important to minimize damage on the structure through the prediction of ground movement. In this paper, finite element analysis was performed to predict the ground movement, based on the data from site investigation and laboratory tests, when deep excavation close to a buried water tank was carried out in soft clay ground. The movement and stabilities of the soil-cement wall(SCW) and the adjacent structure were checked using the results of the analysis and the field measurement. The comparison between the measured and the predicted ground movements showed the significance of the excavation procedure and lowering of water level in the analytical model. In the future, it is needed to improve the prediction method for better estimation of the ground movement.

  • PDF

Finite Element Analysis for Incremental Excavation in Fluid-Saturated Porous Media (유체포화 다공매체의 단계적 굴착해석을 위한 유한요소해석방법)

  • Koo, Jeong Hoi;Hong, Soon Jo;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.109-122
    • /
    • 1993
  • ln this paper, a finite element analysis procedure is proposed for the incremental multi-step excavations in a fluid-saturated porous medium such as saturated soil ground. As the basis of derivation, Biot's equation was used. The proposed procedure was applied to some one- and two-dimensional problems under incremental excavations. Unsaturated cases as well as saturated cases were considered for comparison. Through numerical tests, the effects of permeability and excavation speed on the deformation history was investigated. Results showed that pore pressure built up during incremental excavation has a significant effect on the deformation and stresses of solid skeleton and validated the use of the present procedure for the analysis of multi-step excavations in fluid-saturated media such as in saturated shallow ground.

  • PDF

Design of Building Excavation Plane in Innovative Prestressed Scaffolding(IPS) System (혁신적 프리스트레스트 가시설 구조시스템(IPS)을 적용한 굴착면의 해석 및 설계)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Jung, Kyoung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.163-171
    • /
    • 2006
  • The behaviors and design procedures of building excavation plane in innovative prestressed support (IPS) system are presented in this paper. Determination procedure for initial pretension in IPS wale subjected to design earth pressure is derived. The computer analysis model under uniform and non-uniform earth pressure is constructed using beam element for the IPS wale, tension-only element for cable, and compression-only element for soil. Axial forces and bending moments of IPS wale under initial pretension and design earth pressure are calculated. The combined stresses due to these axial force and bending moment are calculated and safety condition of building excavation plane is investigated.

Elasto-plastic Analysis and In-situ Measurement on Rock Behaviors with Stepwise Excavation of the Steep Soft Seam at a Great Depth (심부 급경사 연약층의 채굴 진행에 따른 주변 암반 거동의 탄소성 해석 및 현장계측)

  • 정소걸;신중호
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • For the deep underground excavation site with the geological complexity of soft seam and hard rock, the numerical analysis and in-situ measurement on the behaviors of roadway and surrounding rock according to stepwise excavation of the steep soft seam are carried out. The strata behavior is modeled using elasto-plastic FEM considering the empirical failure criteria of Hoek & Brown and the strain-softening model. Hydraulic pressure capsule, MPBX and tape extensometer are installed around the roadway for the in-situ measurement of rock stress and deformation. Despite the complexity of geology and excavation procedure, the elasto-plastic analysis considering the empirical failure criteria of Hoek & Brown and the strain-softening model shows good agreement with the in-situ measurement. Comparison of numerical modeling with in-situ measurement enables to predict the behaviors of the roadway and to obtain design parameters for the excavation and support at depth.