• Title/Summary/Keyword: ExacTrac system

Search Result 6, Processing Time 0.025 seconds

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Evaluation of Combine IGRT using ExacTrac and CBCT In SBRT (정위적체부방사선치료시 ExacTrac과 CBCT를 이용한 Combine IGRT의 유용성 평가)

  • Ahn, Min Woo;Kang, Hyo Seok;Choi, Byoung Joon;Park, Sang Jun;Jung, Da Ee;Lee, Geon Ho;Lee, Doo Sang;Jeon, Myeong Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.201-208
    • /
    • 2018
  • Purpose : The purpose of this study is to compare and analyze the set-up errors using the Combine IGRT with ExacTrac and CBCT phased in the treatment of Stereotatic Body Radiotherapy. Methods and materials : Patient who were treated Stereotatic Body Radiotherapy in the ulsan university hospital from May 2014 to november 2017 were classified as treatment area three brain, nine spine, three pelvis. First using ExacTrac Set-up error calibrated direction of Lateral(Lat), Longitudinal(Lng), Vertical(Vrt), Roll, Pitch, Yaw, after applied ExacTrac moving data in addition to use CBCT and set-up error calibrated direction of Lat, Lng, Vrt, Rotation(Rtn). Results : When using ExacTrac, the error in the brain region is Lat $0.18{\pm}0.25cm$, Lng $0.23{\pm}0.04cm$, Vrt $0.30{\pm}0.36cm$, Roll $0.36{\pm}0.21^{\circ}$, Pitch $1.72{\pm}0.62^{\circ}$, Yaw $1.80{\pm}1.21^{\circ}$, spine Lat $0.21{\pm}0.24cm$, Lng $0.27{\pm}0.36cm$, Vrt $0.26{\pm}0.42cm$, Roll $1.01{\pm}1.17^{\circ}$, Pitch $0.66{\pm}0.45^{\circ}$, Yaw $0.71{\pm}0.58^{\circ}$, pelvis Lat $0.20{\pm}0.16cm$, Lng $0.24{\pm}0.29cm$, Vrt $0.28{\pm}0.29cm$, Roll $0.83{\pm}0.21^{\circ}$, Pitch $0.57{\pm}0.45^{\circ}$, Yaw $0.52{\pm}0.27^{\circ}$ When CBCT is performed after the couch movement, the error in brain region is Lat $0.06{\pm}0.05cm$, Lng $0.07{\pm}0.06cm$, Vrt $0.00{\pm}0.00cm$, Rtn $0.0{\pm}0.0^{\circ}$, spine Lat $0.06{\pm}0.04cm$, Lng $0.16{\pm}0.30cm$, Vrt $0.08{\pm}0.08cm$, Rtn $0.00{\pm}0.00^{\circ}$, pelvis Lat $0.06{\pm}0.07cm$, Lng $0.04{\pm}0.05cm$, Vrt $0.06{\pm}0.04cm$, Rtn $0.0{\pm}0.0^{\circ}$. Conclusion : Combine IGRT with ExacTrac in addition to CBCT during Stereotatic Body Radiotherapy showed that it was possible to reduce the set-up error of patients compared to single ExacTrac. However, the application of Combine IGRT increases patient set-up verification time and absorption dose in the body for image acquisition. Therefore, depending on the patient's situation that using Combine IGRT to reduce the patient's set-up error can increase the radiation treatment effectiveness.

  • PDF

Application of the ExacTrac System in Respiratory Gated Radiotherapy for Lung Cancer Patients (폐암 환자의 호흡연동방사선치료를 위한 ExacTrac 시스템 적용)

  • Ko, Seung Young;Lee, Jung Il
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.325-332
    • /
    • 2019
  • This study analyzed the movement of tumors using 4DCT. Appropriate uniform IM were identified using TC, II and CI depending on ITV margins. DVH and NTCP were also compared in each case. Dose analysis on tumors with uniform IM showed that the optimal treatment plan for satisfying all TC, CI, II was evaluated as 2 mm in phase 20 and 3 mm in 40%. That was compared to the dose from the normal tissues of $PTV_{20}$, $PTV_{40}$. In the 20% radiation field, V5, V10, and V20 for the lungs increased 1.49, 1.26, and 0.65%, while 40% increased by 1.9, 2.41 and 1.23%. NTCP had a dose increase of 0.57 to 0.029% from 20% and 40%. There was a dose increase in the spinal cord and heart at uniform IM, but there was no significant difference. These data suggest that the ITV setting of 20%, phase for Respiratory Gated Radiotherapy using Novalis ExacTrac system can be applied with a uniform IM 2 mm and 40% with 3 mm for optimal treatment plan.

Assessment of the Optic-guided Patient Positioning for Spinal Stereotactic Radiosurgery Using Novalis ExacTrac System (노발리스 ExacTrac system을 이용한 척추 정위 방사선수술 방법 평가)

  • 이동준;손문준;최광영;이기택;최찬영;황금철;황충진
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.218-223
    • /
    • 2002
  • Stereotactic radiosurgery for intracranial lesion is well established since the Lars Leksell first introduced radiosurgery concept in 1951 Its use in the treatment of spinal lesion has been limited by the availability of effective immobilization devices. The first clinical experience of the spinal stereotactic radiosurgery technique was reported by Hamilton AJ. in 1995. Recently, Optic-guided patient positioning technique for extracranial stereotactic radiosurgery was developed and reported. This study is for assess the target positioning accuracy of the optic guided patient positioning system Exactrac (BrainLab., Inc, Germany). We have designed phantom for assess the accuracy of spinal stereotactic radiosurgery The infrared reflective body markers attached to the relatively immobile part of the body and a series of 2 mm CT images was taken. The image sets were transferred to the planning computer. During the radiosurgery treatment, we measure the real-time display showing the positioning values from Exactrac computer. And we compare the isocenter deviation from irradiated center point of the film which was mounted on the lesion site of the phantom and pin hole site of that film. The accuracy of the ExacTrac system in positioning a target point shows enough for the clinical applications.

  • PDF

Image-Guided Radiotherapy for Target Localization in Prostate Cancer with Implanted Markers

  • Suh, Ye-Lin;Park, Sung-Ho;Ahn, Seung-Do;Kim, Jong-Hoon;Lee, Sang-Wook;Shin, Seong-Soo;Choi, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.68-70
    • /
    • 2005
  • To precisely localize target in prostate cancer, image-guided radiotherapy was performed using the $ExacTrac^{\circledR}$ x-ray system (Brainlab, Germany) with implanted markers. For three prostate cancer patients, three gold markers were implanted into prostate. Orthogonal portal images were acquired every treatment and CT scans were repeated 3~5 times during the course of treatment. After correcting setup errors calculated by the system, the position of the implanted markers and the distance between them were detected in daily portal images and in CT images, and analyzed retrospectively. Deviation of the relative position of the implanted markers and the distance between them were less than 1 mm in lateral, longitudinal, and vertical direction for three patients, both in portal images and CT images. This study reveals that image-guided radiotherapy using the $ExacTrac^{\circledR}$ system is useful to verify positioning errors and localize prostate target with implanted markers, reducing the planning target volume (PTV) margin as well as irradiation to rectum and bladder.

  • PDF

Evaluation of Real-time Target Positioning Accuracy in Spinal Radiosurgery (척추방사선수술시 실시간 추적검사에 의한 병소목표점 위치변이 평가)

  • Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.290-294
    • /
    • 2013
  • Stereotactic Radiosurgery require high accuracy and precision of patient positioning and target localization. We evaluate the real time positioning accuracy of isocenter using optic guided patient positioning system, ExacTrac (BrainLab, Germany), during spinal radiosurgery procedure. The system is based on real time detect multiple body markers attached on the selected patient skin landmarks. And a custom designed patient positioning verification tool (PPVT) was used to check the patient alignment and correct the patient repositioning before radiosurgery. In this study, We investigate the selected 8 metastatic spinal tumor cases. All type of tumors commonly closed to thoracic spinal code. To evaluate the isocenter positioning, real time patient alignment and positioning monitoring was carried out for comparing the current 3-dimensional position of markers with those of an initial reference positions. For a selected patient case, we have check the isocenter positioning per every 20 millisecond for 45 seconds during spinal radiosurgery. In this study, real time average isocenter positioning translation were $0.07{\pm}0.17$ mm, $0.11{\pm}0.18$ mm, $0.13{\pm}0.26$ mm, and $0.20{\pm}0.37$ mm in the x (lateral), y (longitudinal), z (vertical) directions and mean spatial error, respectively. And body rotations were $0.14{\pm}0.07^{\circ}$, $0.11{\pm}0.07^{\circ}$, $0.03{\pm}0.04^{\circ}$ in longitudinal, lateral, table directions and mean body rotation $0.20{\pm}0.11^{\circ}$, respectively. In this study, the maximum mean deviation of real time isocenter positioning translation during spinal radiosurgery was acceptable accuracy clinically.