• Title/Summary/Keyword: Evolutionary computing

Search Result 83, Processing Time 0.024 seconds

The Evolutionary Trends and Influential Factors Analysis of Agricultural Trade between South Korea and RCEP Member Countries

  • Qianli Wu;Jinyan Tian;Haiyan Yu;Ziyang Liu
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.73-86
    • /
    • 2024
  • With the acceleration of regional economic integration, the agricultural trade network within the RCEP region presents new opportunities and challenges for member countries. This study focuses on agricultural trade among RCEP members from 2011 to 2020, utilizing social network analysis to explore the structural characteristics and evolutionary trends of the trade network. Additionally, an extended gravity model is employed to empirically analyze the key factors influencing South Korea's agricultural trade with other member countries. The findings reveal that: (1) Agricultural trade relationships within the RCEP region are stable and mature, with high interconnectivity in the trade network, indicating a trend towards balanced development. (2) The positions of member countries within the agricultural trade network are characterized by both high density and heterogeneity. (3) South Korea's agricultural trade with RCEP member countries is positively influenced by the economic size, population size, and governance level of its trading partners, while South Korea's own indicators show no significant effect. The trade distance between South Korea and member countries also has a positive impact on agricultural trade. By combining social network analysis with an extended gravity model, this study provides a multi-faceted quantitative analysis of the RCEP agricultural trade network, offering new insights into regional agricultural trade. It also provides empirical evidence for agricultural trade cooperation between South Korea and other RCEP countries.

Tuning of a PID Controller Using Soft Computing Methodologies Applied to Basis Weight Control in Paper Machine

  • Nagaraj, Balakrishnan;Vijayakumar, Ponnusamy
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • Proportional.Integral.Derivative control schemes continue to provide the simplest and effective solutions to most of the control engineering applications today. However PID controller is poorly tuned in practice with most of the tuning done manually which is difficult and time consuming. This research comes up with a soft computing approach involving Genetic Algorithm, Evolutionary Programming, and Particle Swarm Optimization and Ant colony optimization. The proposed algorithm is used to tune the PID parameters and its performance has been compared with the conventional methods like Ziegler Nichols and Lambda method. The results obtained reflect that use of heuristic algorithm based controller improves the performance of process in terms of time domain specifications, set point tracking, and regulatory changes and also provides an optimum stability. This research addresses comparison of tuning of the PID controller using soft computing techniques on Machine Direction of basics weight control in pulp and paper industry. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the soft computing based tuning method. The ability of the designed controller, in terms of tracking set point, is also compared and simulation results are shown.

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

Distribution System Reconfiguration Using the PC Cluster based Parallel Adaptive Evolutionary Algorithm

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho;Hwang Gi-Hyun;Yoon Yoo-Soo
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.269-279
    • /
    • 2005
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to find the optimal switch position because of its numerous local minima. In this investigation, a parallel AEA was developed for the reconfiguration of the distribution system. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of GA and the local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC-cluster system consisting of 8 PCs·was developed. Each PC employs the 2 GHz Pentium IV CPU, and is connected with others through switch based fast Ethernet. The new developed algorithm has been tested and is compared to distribution systems in the reference paper to verify the usefulness of the proposed method. From the simulation results, it is found that the proposed algorithm is efficient and robust for distribution system reconfiguration in terms of the solution quality, speedup, efficiency, and computation time.

Gestures as a Means of Human-Friendly Communication between Man and Machine

  • Bien, Zeungnam
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.3-6
    • /
    • 2000
  • In this paper, ‘gesture’ is discussed as a means of human-friendly communication between man and machine. We classify various gestures into two Categories: ‘contact based’ and ‘non-contact based’ Each method is reviewed and some real applications are introduced. Also, key design issues of the method are addressed and some contributions of soft-computing techniques, such as fuzzy logic, artificial neural networks (ANN), rough set theory and evolutionary computation, are discussed.

  • PDF

Synthesis of Multiple Constant Multiplication Circuits Using GA with Chromosomes Composed of Stack Type Operators

  • Isoo, Yosuke;Toyoshima, Hisamichi
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.623-626
    • /
    • 2000
  • The purpose of this paper is to find an efficient solution for multiple constant multiplication (MCM) problem. Since the circuit structure can be represented as a directed acyclic graph, evolutionary computing is considered as an effective tool for optimization of circuit synthesis. In this paper, we propose a stack type operator as a chromosome element to synthesize a directed acyclic graph efficiently. This type of chromosome can represent a graph structure with a set of simple symbols and so we can employ the similar method to a conventional GA.

  • PDF

The Design of Hybrid Fuzzy Controller for Inverted Pendulum (Inverted Pendulum을 위한 하이브리드 퍼지 제어기 설계)

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2702-2704
    • /
    • 2001
  • In this Letter, we propose a comprehensive design methodology of hybri'd Fuzzy controllers (HFC). The HFC comes as a form of a convex combination of a standard PID controller and a fuzzy controller. The design procedure dwells on the use of evolutionary computing (genetic algorithm) and an auto-tuning algorithm. The tuning of the scaling factors of the HFC is an essential component of the entire optimization process. A numerical study is presented and a detailed comparative analysis is also included.

  • PDF

Trends in Chip Fabrication Infrastructure for Implementation in Quantum Technology (양자 기술 구현을 위한 칩 제작 인프라 기술 동향)

  • J.W. Kim;K.W. Moon;J.J. Ju
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • In the rapidly growing field of quantum computing, it is evident that a robust supply chain is needed for commercialization or large-scale production of quantum chips. As a result, the success of many R&D projects worldwide relies on the development of quantum chip foundries. In this paper, a variety of quantum chip foundries, particularly the ones creating photonic integrated circuit (PIC) quantum chips, are reviewed and summarized to demonstrate current technological trends. Global projects aiming to establish new foundries, as well as information regarding their respective funding, are also included to identify the evolutionary direction of quantum computing infrastructure. Furthermore, the potential application of lithium niobate as a novel material platform for quantum chips is also discussed.

Adaptive Truncation technique for Constrained Multi-Objective Optimization

  • Zhang, Lei;Bi, Xiaojun;Wang, Yanjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5489-5511
    • /
    • 2019
  • The performance of evolutionary algorithms can be seriously weakened when constraints limit the feasible region of the search space. In this paper we present a constrained multi-objective optimization algorithm based on adaptive ε-truncation (ε-T-CMOA) to further improve distribution and convergence of the obtained solutions. First of all, as a novel constraint handling technique, ε-truncation technique keeps an effective balance between feasible solutions and infeasible solutions by permitting some excellent infeasible solutions with good objective value and low constraint violation to take part in the evolution, so diversity is improved, and convergence is also coordinated. Next, an exponential variation is introduced after differential mutation and crossover to boost the local exploitation ability. At last, the improved crowding density method only selects some Pareto solutions and near solutions to join in calculation, thus it can evaluate the distribution more accurately. The comparative results with other state-of-the-art algorithms show that ε-T-CMOA is more diverse than the other algorithms and it gains better in terms of convergence in some extent.

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.