Proceedings of ITC-CSCC 2000, Pusan, Korea

Synthesis of Multiple Constant Multiplication Circuits Using GA
with Chromosomes Composed of Stack Type Operators

Yosuke Isoo and Hisamichi Toyoshima

Department of Electrical Engineering
Kanagawa University
3-27-1 Rokkakubashi, Kanagawa-ku
Yokohama 221-8686 Japan
Tel : +81-45-481-5661, Fax : +81-45-491-7915
E-mail : toyoQ@cc.kanagawa-u.ac.jp

Abstract

The purpose of this paper is to find an efficient solu-
tion for multiple constant multiplication (MCM) prob-
lem. Since the circuit structure can be represented as a
directed acyclic graph, evolutionary computing is con-
sidered as an effective tool for optimization of circuit
synthesis.

In this paper, we propose a stack type operator as
a chromosome element to synthesize a directed acyclic
graph efficiently. This type of chromosome can represent
a graph structure with a set of simple symbols and so we
can employ the similar method to a conventional GA.

1 Introduction

There exist many applications about multiple con-
stant multiplication (MCM) in DSP, telecommunica-
tions, graphics, and so on. In MCM circuits, it is possi-
ble to reduce computation by replacing multipliers with
adders and shifts, however, synthesis of MCM so as to
minimize computational complexity is known as an NP
complete problem. For MCM problem, several synthesis
methods have been proposed [1-4]. Among them, repre-
sentation of MCM circuit is categorized by two methods.
One is by a binary array and another is by a directed
acyclic graph (DAG).

The method that synthesizes MCM circuit with bi-
nary array is the algorithm that extracts the common
bit pattern to reduce the number of additions and shifts
[2-4]. This method is simple and fast, however, its opti-
mization is local and so the solution is not optimum.

On the other hand, in the synthesis method using
the representation of DAG [1], partial results formed in
any one constant-sample multiplication can be reused
to assist in the formation of other product terms. As
a result, the whole multiplication block can be simpli-
fied with additions and shifts instead of multiplications.
For optimization of graph structure, genetic program-
ming (GP) is considered as an effective tool, and Ref.[5]
shows the GP based algorithm to synthesize graph struc-
ture. However GP has the problem that the chromosome
structure and genetic operators are so complicated and

time-consuming.

In this paper, we propose a stack type operator as a
chromosome element to synthesize DAG efficiently. This
type of chromosome can represent DAG with a set of
simple symbols and so we can employ the similar method
to a conventional GA.

2 MCM as a directed acyclic

graph
Multiple constant multiplication (MCM) is expressed as
Yi = a7, i:O,l,"‘,]\T—l, (1)

where each q; is a constant coefficient. Figure 1 shows
a flow graph of MCM as a multiplication block.

input x

Figure 1: Multiplication block

One of the expression methods for MCM circuit, a di-
rected acyclic graph (DAG) has been presented [1]. In
MCM circuit, partial results formed in any one constant-
sample multiplication can be reused to assist in the for-
mation of other product terms. As a result, the whole
multiplication block can be simplified with additions
and shifts instead of multiplications. For example, the
constant set {1,7,16,21,33} can be expressed by DAG
as shown in Figure 2. Ref.[1] also shows the synthesis
method of MCM circuits, however, this is a straight-
forward method and is not considered to find the opti-
mum solution.

As an optimization approach for synthesizing graph
structure, genetic programming (GP) is to be consid-
ered. Some GP algorithms with graph structure chro-
mosomes have been introduced in Ref.[5]. However, GP

— 623 —

Yo Y2 VA Y3 Ya
Figure 2: Example of constant set{1,7,16,21,33}

has some problems that a chromosome structure is com-
plicated and computation is time-consuming. Therefore,
we will show another simple chromosome structure for
representing DAG to be applied by GA in the following
sections.

3 Genetic Algorithms with chro-
mosomes composed of stack
type operators

3.1 Stack type operators

Stack is a mechanism that last-in data is first-out and
computation is performed using a reverse polish nota-
tion. Stack type operators are symbols for the operation
on stack elements. The sequence of stack type operators
is executed one by one to operates stack elements.

In this work we employ the following operators:

e | dup|: duplicates the top of stack value.

o [add] : pops the top and the second top of stack
values, adds them and pushes the result.

. : shifts the top of stack value to the left by one
bit.

° : rolls every stack value so as to move the
bottom of stack to the top of stack.

Each operator’s behavior is shown in Figure 3.

Combined the above operators, the equivalent opera-
tion to DAG can be performed. In this paper, a combi-
nation of stack type operators is considered as a chro-
mosome. It should be noted that each chromosome is
generated by the following rules to avoid missing stack
elements:

(1) Initial value of stack is z = 1.
(2) ‘add’ is not pushed if the number of stack elements

is less than two.

(3) ‘rol’ is not pushed if the number of stack elements
is less than two.

X dupA X X ; 5x
- X 4x "
(a) dup (b) add
4x stt | 8x 3x rolj X
- 2X - 3x
X 2X
(c) sft (d) rol

Figure 3: Movement of stack type operators

(4) ‘add’ is not pushed after ‘dup’.

An example of chromosome to express the constant set
{1,5,14} is shown in Figure 4.

x 1 @A/ s N\
N O/ /\IJ \'J

Ko

I
1
1
v
y

T
<
< -

4

[x [aup|stt]see|dup|rol] ada|stt]add|

)’Io A y2
dup sft sft dup rol add sft add

X X 2x| | 4x| | 4x X 5x | {10x| j14x

X X x | 14x| | 4x} | 4x]| | 4x
X 4x

Figure 4: Example of stack type operator

3.2 Optimization using GA

Usually each chromosome in GA is encoded as a bit
string, and so it is difficult to represent a graph struc-
ture such as DAG. However, as the proposed type of
chromosome is considered as a symbol string, conven-
tional GA is easily applied to optimize a graph struc-
ture. GA operations handled in this work are shown in
the following:.

— 624 —

Selection : Elitism is used to prevent losing the best
found solution and to increase the performance of
GA.

Crossover : Single point crossover is used provided
that a crossover point is selected so that the num-
ber of stack elements is the same each other. An
example of crossover behavior is shown in Figure 5.

Mutation : Generate a new chromosome by a certain
mutation rate.

A |dup |sft |dup Isft rol laddlsft Iaddl

-~

stack elements = 12} 12} 3

'
- '

-

3 22 3
P e
B Iduplsftlsftldup addlsftlrolladcﬂ

stack elements =22} 23 2 (@ i2 12} (2 1

A ldup!sftlduplsft addlsftlrolladdl

3 ®i2 2 2 1

B lduwp |sft lsft |dup rol |add lsft Iaddl

stack elements= 2 2 2 @SS 2 2 3

stack elements= 2 2

Figure 5: Crossover

To evaluate the fitness of each chromosome, we have
the following fitness function. Let n, be the number
of matched coefficients, n, be the number of additions,
and n; be the number of shifts, respectively. The fitness
is defined as

km xnp /N
+k, X N/(ng + 1) (2)
+ks x N/(ns + 1),

fitness =

where N is the number of constants, and k., kg, or ks
denotes each weight.
A flowchart of GA is shown in Figure 6.

4 Experimental Results

In this section, some examples of optimization result
using the proposed method are shown. Also the perfor-
mance of the proposed method and comparisons with a
conventional method are presented.

4.1 Optimization examples

We have the following simulations on the condition that
the constant set a; is given as Eqn.(3) or Eqn.(4).

{a;} ={1,7,16,21,33} (3)
{a:} = {1,21,43,93,128,179,237} (4)
-6

ﬁew populatioﬂ

(Evaluate the ﬁtnesg

End condition
(No. of Generations

End

Figure 6: GA flowchart

Each parameter of GA is shown in Table 1. In case of
Eqn.(3), the obtained structure is shown in Figure 7.
This result requires 4 additions and 8 shifts, whereas
Ref.[1] requires 4 additions and 10 shifts. In case of
Eqn.(4), the DAG circuit of Figure & is obtained. This
structure consists of 8 additions and 11 shifts, whereas
Ref.[1] consists of 9 additions and 17 shifts.

|]

} 1

| |

| |

321 331

—(O— l

! Y

! v o v
Yo Y2 Yi Y4 Y3

Figure 7: Resultant circuit for the constant set
{1,7,16,21,33}

4.2 Performance considerations and

comparisons

To evaluate the statistical performance of the proposed
method, we show the following simulations. For sev-
eral patterns of the number of bit of each constant and
the number of constant set, such as six 7-bit, five 8-bit,

S__

...f
» <

[\

9

21[3) 4 \43\3 86

42
L/ S\

——————————a i

~3
O

[}
3
f
¥ v
Yo Ya y3 Y6
Figure 8 Resultant circuit for the constant set

{1,21,43,93,128,179,237}

Table 1: GA parameters in optimization examples

Eqn.(3) | Eqn.(4)
No. of generations 1500 1500
No. of populations 3000 3000
gene length 23 .80
mutation rate 20% ™%
crossover rate 60% 80%
ke 20 20
k, 1 1

or four 9-bit constants, ten simulations were made re-
spectively. In each simulation, each parameter of GA
is shown in Table 2, and every constant set to be op-
timized is generated at random. Figure 3 summarizes
the results of average reduction rate of additions and
shifts compared with Ref.[1]. As seen from this table,
the number of additions is reduced by 10% - 20% and
the number of shifts is reduced by about 50%.

Table 2: GA parameters in random simulations

7 bit | 8 bit | 9 bit
No. of generations | 1200 | 1500 | 2000
No. of populations | 3000 | 3000 | 4000
gene length 70 80 100
mutation rate 7% | 10% | 20%
crossover rate 80% | 80% | 90%
kq 20 20 20
ks 1 1 1

5 Conclusions

In this paper, we have proposed the novel chromosome
structure to synthesize DAG. The proposed chromosome
is composed of stack type operators and it is expressed

Table 3: Experimental results

No. of bit No. of Reduction Reduction
constants | rate in ’add’ | rate in ’sft’

9 bit 4 11.5% 48.9%

8 bit 5 16.3% 57.0%

7 bit 6 21.1% 52.8%

by the simple sequence of symbols. This concept en-
abled us to employ GA as an optimization method and
we have shown that MCM circuit is synthesized with
smaller number of additions and shifts than the existing
method.

As a result of simulations, for up to 9 bit constant set,
the proposed method is very effective for MCM problem.
However, some problems still remain. For example, to
find the optimum solution, multiple parameters have to
be set appropriately. Furthermore, it is difficult to opti-
mize the MCM with long word-length constants. Solv-
ing these problems will be the further study.

References

[1] David Bull, David Horrocks, “Primitive operator
digital filters”, IEE Proceedings-g Vol.138, pp.401-
411, June 1991.

[2] A.Matsuura, M.Yukishita, and A.Nagoya, “A Hier-
archical Method for the Multiple Constant Multipli-
cation Problem”, IEICE Trans. Fundamentals vol.
E80-A, No.10, pp.1767-1773, Oct. 1997.

[3] M.Potkonjak, M.B.Srivastava, and A. P. Chan-
drakasan, “Multiple constant multiplication: Efli-
cient and versatile framework and algorithms for ex-
ploring common subexpression elimination”, IEEE
Trans. Computer-Aided Des. Integrated Circuits &
Syst., vol.15, no.2, pp.151-165, Feb. 1996.

[4] Keshab K.Parhi, “VLSI Digital Signal Processing
Systems”, Wiley-Interscience, pp.559-590, 1999.

[6] Zbigniew Michalewicz, “Genetic Algorithms + Data
Structures = Evolution Programs Second, Extended
Edition”, Springer-verlag, 1994.

— 626 —

