• Title/Summary/Keyword: Evolutionary Search

Search Result 248, Processing Time 0.025 seconds

Active Contour Based Edge Detection Using Evolutionary Computation (진화 연산을 이용한 능동외곽기반의 윤곽선검출에 관한 연구)

  • Kang, Hyeon-Tae;Cho, Deok-Hwan;Hwang, Gi-Hyun;Mun, Kyeong-Jun;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2405-2407
    • /
    • 2001
  • In this paper, we apply and evolutionary computation(EC), probabilistic optimization algorithm, to active contour. A number of problems exist associated with such as algorithm initialization, existence of local minima, non-convex search space, and the selection of model parameters in conventional models. We propose an adequate fitness function for these problems. The determination of fitness function adequate to active contour using EC is important in search capability. As a result of applying the proposed method to non-convex object shape, we improve the unstability and contraction phenomena, in nature, of snake generated in deformable contour optimization.

  • PDF

Development of Economical Run Model for High Speed Rolling stock 350 experimental (한국형 고속열차 경계운전 모형 개발)

  • Lee, Tae-Hyung;Park, Choon-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.238-240
    • /
    • 2005
  • The Optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model have been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme are utilized, respectively. As a result, two meta-models for trip time and energy consumption were constructed. The optimization to search an economical running pattern was achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

  • PDF

Optimal Economical Running Patterns Based on Fuzzy Model (철도차량을 위한 퍼지모델기반 최적 경제운전 패턴 개발)

  • Lee, Tae-Hyung;Hwang, Hee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.594-600
    • /
    • 2006
  • The optimization has been performed to search an economical running pattern in the view point of trip time and energy consumption. Fuzzy control model has been applied to build the meta-model. To identify the structure and its parameters of a fuzzy model, fuzzy c-means clustering method and differential evolutionary scheme ate utilized, respectively. As a result, two meta-models for trip time and energy consumption are constructed. The optimization to search an economical running pattern is achieved by differential evolutionary scheme. The result shows that the proposed methodology is very efficient and conveniently applicable to the operation of railway system.

Using Echolocation Search Algorithm (ESA) for truss size optimization

  • Nobahari, Mehdi;Ghabdiyan, Nafise
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.855-864
    • /
    • 2022
  • Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.

An Improved Harmony Search Algorithm and Its Application in Function Optimization

  • Tian, Zhongda;Zhang, Chao
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1237-1253
    • /
    • 2018
  • Harmony search algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and can solve different optimization problems. In order to further improve the performance of the algorithm, this paper proposes an improved harmony search algorithm. Key parameters including harmonic memory consideration (HMCR), pitch adjustment rate (PAR), and bandwidth (BW) are optimized as the number of iterations increases. Meanwhile, referring to the genetic algorithm, an improved method to generate a new crossover solutions rather than the traditional mechanism of improvisation. Four complex function optimization and pressure vessel optimization problems were simulated using the optimization algorithm of standard harmony search algorithm, improved harmony search algorithm and exploratory harmony search algorithm. The simulation results show that the algorithm improves the ability to find global search and evolutionary speed. Optimization effect simulation results are satisfactory.

Process Planning in Flexible Assembly Systems Using a Symbiotic Evolutionary Algorithm (공생 진화알고리듬을 이용한 유연조립시스템의 공정계획)

  • Kim, Yeo-Keun;Euy, Jung-Mi;Shin, Kyoung-Seok;Kim, Yong-Ju
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.208-217
    • /
    • 2004
  • This paper deals with a process planning problem in the flexible assembly system (FAS). The problem is to assign assembly tasks to stations with limited working space and to determine assembly routing with the objective of minimizing transfer time of the products among stations, while satisfying precedence relations among the tasks and upper-bound workload constraints for each station. In the process planning of FAS, the optimality of assembly routing depends on tasks loading. The integration of tasks loading and assembly routing is therefore important for an efficient utilization of FAS. To solve the integrated problem at the same time, in this paper we propose a new method using an artificial intelligent search technique, named 2-leveled symbiotic evolutionary algorithm. Through computational experiments, the performance of the proposed algorithm is compared with those of a traditional evolutionary algorithm and a symbiotic evolutionary algorithm. The experimental results show that the proposed algorithm outperforms the algorithms compared.

An Efficient Evolutionary Algorithm for the Fixed Charge Transportation Problem (고정비용 수송문제를 위한 효율적인 진화 알고리듬)

  • Soak, Sang-Moon;Chang, Seok-Cheoul;Lee, Sang-Wook;Ahn, Byung-Ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The transportation problem (TP) is one of the traditional optimization problems. Unlike the TP, the fixed charge transportation problem (FCTP) cannot be solved using polynomial time algorithms. So, finding solutions for the FCTP is a well-known NP-complete problem involving an importance in a transportation network design. So, it seems to be natural to use evolutionary algorithms for solving FCTP. And many evolutionary algorithms have tackled this problem and shown good performance. This paper introduces an efficient evolutionary algorithm for the FCTP. The proposed algorithm can always generate feasible solutions without any repair process using the random key representation. Especially, it can guide the search toward the basic solution. Finally, we performed comparisons with the previous results known on the benchmark instances and could confirm the superiority of the proposed algorithm.

An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming

  • Castelli, Mauro;Trujillo, Leonardo;Goncalves, Ivo;Popovic, Ales
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.651-658
    • /
    • 2017
  • High-performance concrete, besides aggregate, cement, and water, incorporates supplementary cementitious materials, such as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer. Hence, it is a highly complex material and modeling its behavior represents a difficult task. This paper presents an evolutionary system for the prediction of high performance concrete strength. The proposed framework blends a recently developed version of genetic programming with a local search method. The resulting system enables us to build a model that produces an accurate estimation of the considered parameter. Experimental results show the suitability of the proposed system for the prediction of concrete strength. The proposed method produces a lower error with respect to the state-of-the art technique. The paper provides two contributions: from the point of view of the high performance concrete strength prediction, a system able to outperform existing state-of-the-art techniques is defined; from the machine learning perspective, this case study shows that including a local searcher in the geometric semantic genetic programming system can speed up the convergence of the search process.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.