• Title/Summary/Keyword: Event-based simulation

Search Result 528, Processing Time 0.025 seconds

An Efficient Complex Event Detection Algorithm based on NFA_HTS for Massive RFID Event Stream

  • Wang, Jianhua;Liu, Jun;Lan, Yubin;Cheng, Lianglun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.989-997
    • /
    • 2018
  • Massive event stream brings us great challenges in its volume, velocity, variety, value and veracity. Picking up some valuable information from it often faces with long detection time, high memory consumption and low detection efficiency. Aiming to solve the problems above, an efficient complex event detection method based on NFA_HTS (Nondeterministic Finite Automaton_Hash Table Structure) is proposed in this paper. The achievement of this paper lies that we successfully use NFA_HTS to realize the detection of complex event from massive RFID event stream. Specially, in our scheme, after using NFA to capture the related RFID primitive events, we use HTS to store and process the large matched results, as a result, our scheme can effectively solve the problems above existed in current methods by reducing lots of search, storage and computation operations on the basis of taking advantage of the quick classification and storage technologies of hash table structure. The simulation results show that our proposed NFA_HTS scheme in this paper outperforms some general processing methods in reducing detection time, lowering memory consumption and improving event throughput.

Development of the Distributed Real-time Simulation System Based on HLA and DEVS (DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발)

  • Kim, Ho-Jeong;Lee, Jae-Hyun;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.

Literature Review of Commercial Discrete-Event Simulation Packages (상용 이산사건 시뮬레이터 패키지들에 대한 선행연구 분석)

  • Jihyeon Park;Gysun Hwang
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Smart factory environments and digital twin environments are established, and today's factories accumulate vast amounts of production data and are managed in real time as visualized results suitable for user convenience. Production simulation techniques are in the spotlight as a way to prevent delays in delivery and predict factory volatility in situations where production schedule planning becomes difficult due to the diversification of production products. With the development of the digital twin environment, new packages are developed and functions of existing packages are updated, making it difficult for users to make decisions on which packages to use to develop simulations. Therefore, in this study, the concept of Discrete Event Simulation (DES) performed based on discrete events is defined, and the characteristics of various simulation packages were compared and analyzed. To this end, studies that solved real problems using discrete event simulation software for 10 years were analyzed, and three types of software used by the majority were identified. In addition, each package was classified by simulation technique, type of industry, subject of simulation, country of use, etc., and analysis results on the characteristics and usage of DES software were provided. The results of this study provide a basis for selection to companies and users who have difficulty in selecting discrete event simulation package in the future, and it is judged that they will be used as basic data.

Development of a Windows-based Program for Discrete Event Simulation of Truck-Loader Haulage Systems in an Underground Mine (지하광산 트럭-로더 운반시스템의 이산 사건 시뮬레이션을 위한 Windows용 프로그램 개발)

  • Choi, Yosoon;Park, Sebeom;Lee, Sung-Jae;Baek, Jieun;Jung, Jihoo;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • We developed a Windows-based program for discrete event simulation of truck-loader haulage systems in an underground mine. The Daesung MDI limestone mine located in Samcheok City, Gangwon Province, Korea was selected as the study area to design the program. The developed program is composed of the graphic user interface (GUI) and simulation engine implemented by Visual Basic.NET 2012 and the GPSS/H simulation language, respectively. When a user sets up input parameters for the discrete event simulation through GUI, the program activates the simulation engine, and then simulation results are displayed on GUI. This paper describes the details of the program development as well as its applications to the study area to determine the optimal number of trucks dispatched at each loading point under different operating conditions.

Event-Driven Real-Time Simulation Based On The RM Scheduling and Lock-free Shared Objects

  • Park, Hyun Kyoo
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.199-214
    • /
    • 1999
  • The Constructive Battle Simulation Model is very important to the recent military training for the substitution of the field training. However, real battlefield systems operate under real-time conditions, they are inherently distributed, concurrent and dynamic. In order to reflect these properties by the computer-based simulation systems which represent real world processes, we have been developing constructive simulation model for several years. Conventionally, scheduling and resource allocation activities which have timing constraints, we elaborated on these issues and developed the simulation system on commercially available hardware and operating system with lock-free resource allocation scheme and rate monotonic scheduling.

  • PDF

Verification and Evaluation of Spatial Structure Theory through Discrete Event Simulation (이산사건 시뮬레이션을 이용한 공간구조론의 검증 및 평가)

  • Yoon, So Hee;Kim, Suk Tae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.2000-2013
    • /
    • 2016
  • The purpose of this study is to validate the validity of the methodology for analyzing the space with complex characteristics and to evaluate the existing spatial structure analysis theory. Seven example models are designed and analyzed data of spatial syntax analysis and visibility graph analysis. And analyzed the agent-based model using two analytical methods: the adjacent space and the whole spatial connection. The results of this study are as follows. Based on the analysis of the agent - based model for perfectly freewalking, the validity of the method is verified in terms of predictive ability and effectiveness. Agent-based models can be simulated considering various variables, so realistic predictions will be possible and a new biography of complex systems can be met.

Model-based design of hierarchical event-based control

  • Chi, Sung-Do;Zeigler, Bernard P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1240-1245
    • /
    • 1990
  • Intelligent Control is an extended paradigm that subsumes both control and AI paradigms, each of which is limited by its own abstractions. Autonomy, as a design goal, offers an arena where both control and AI paradigms must be applied -and a challenge to the viability of both as independent entities. We discuss hierarchical event-based control architectures in which AI and Control paradigms can be integrated within a model-based approach. In a niodel-based system, knowledge is encapsulated in the form of models at the various layers to support the predefined system objectives. Concepts are illustrated with a robotmanaged space-borne chemical laboratory.

  • PDF

Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

  • Bucknor, Matthew;Grabaskas, David;Brunett, Acacia J.;Grelle, Austin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.360-372
    • /
    • 2017
  • Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis (결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.187-195
    • /
    • 2009
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.