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Event-Driven Real-Time Simulation
Based On The RM Scheduling and Lock—free
Shared Objects

Park, Hyun Kyoo®

Abstract

The Constructive Battle Simulation Model is very important to the recent military
training for the substitution of the field training. However, real battlefield systems
operate under real-time conditions, they are inherently distributed, concurrent and
dynamic. In order to reflect these properties by the computer-based simulation
systems which represent real world processes, we have been developing conslructive
simulation model for several years. Conventionally, scheduling and resource allocation
activities which have timing conslraints are major problem of real-time computing
systems. To overcome these constraints, we elaborated on these issues and developed
the simulation system on  commercially available hardware and operating system

with lock-free resource allocation scheme and rate monotonic scheduling.
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1. Introduction

The Army’'s C2(Command & Control) training simulation models are interactive

computer—driven systems that assist training readers, commanders, and their staffs to

develop and maintain the unit readiness. This is well-known as a constructive

simulation.

The constructive simulation system is one of the famous real-time system
software, and the one common feature of all real-time systems is defined as the
correctness of the system depend not only on the logical result of computation, but
also on the time at which the results are produced.

Most work on implementing the constructive simulation model has focused on
using the priority-driven scheduling and lock-based critical sections to ensure object
consistency with a cost ineffectiveness, thus it specifically increased operating system
overhead.

Qur method is allocating computational resources fo preemptible, lock-free shared
objects with static priority. The formal comparison based on the previous research
and the our experimental results are of interest because they avoid priority inversion
and deadlock with no underlying operating system support for object sharing.
Eventually, this approach to accomplish the real-time constraints is techniques to
deal with the mission spaces of military simulation system. In a hard real-time
system, unless the scheduling processes are carefully controlled, it may be difficult or

impossible to ensure that task deadlines are always met.

2. Theoretical Background And Previous Studies

2.1 Terminologies and Notations

There are some key definitions that apply through this paper are enlisted below.
Event @ A change of object attribute wvalue, an interaction between objects, an
instantiation of a new object, or a deletion of an existing object that is associated

with a particular point on the simulation time axis. Each event contains a time stamp

indicating when it is said to occur.
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Logical Time : A simulation system’s current point on the logical time axis used to
specify before and after relationships among events. Specifically, the simulation
requests advances in logical time via Time Advance Request and the simulation
system notify the advance of logical time through the Time Advance Grant service.

Wallclock Time : a simulation systern’s measurement of true global time, where the

measurement is typically output from a hardware clock.

2.2 An Analytical Framework

The term schedulahility means the ability of a process or a set of process to meet
deadlines. The analysis of the schedulability of various hard real-time systems was

performed and investigated. For the real-time simulation, we assume that there are n
processes on an uni-processor. And the amount of time ¢; that task 7; spends

performing an operation with accessing objects without nested calls is

i = ui + mi - leee , Where [Eq. 1]
u; . the computation time not involving accesses to shared objects

m; ' the number of shared objects accesses by 7,

feee | maximum computation time for any object access

In this paper, we discuss the complexity of the real-time scheduling algorithms
achieving lag bounds of <1 or better. Generally, a schedule for which the number of
allocations to any task is at all times within an additive A of the ideal value is said
to achieve a lag bound of A.

Informally, lag of task T at slot ¢t with schedule S is

Lag(S, T, t) = W(T, t) - A5, T, 1) [Eq. 2]
where W(T, 1) represents the ideal number of times for task 7 to be assigned the
objects and A(S, T, t) denotes that task T is allocated the objects under schedule S
in slots O through ¢-1. A lag bound L is a pair (<L, AL) where <L is either < or
<, and AL is a real number. For the sake of brevity, we refer to these lag bound
as (<, 1) and (=, 1 - 1(2n - 2).

A scheduling algorithm achieves a lag bound of L if and only if any schedule S

produced by the algorithm satisfy | Lag(S, T. t) | <LAL for all tasks T and slots t.
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Former research, several scheduling paradigms emerge, depending on schedulability
analysis, and whether the result of the analysis itself produces a schedule or plan
according to which tasks are dispatched at run-time. Based on this, previous
research identified by the following classes of algorithms described in <Table 1>.
The evaluations and characteristics .of these approaches can be found in [7].

We define the constructive simulation and the events as a problem of dynamic task

set with variable task requests.

Table 1. Scheduling on task attributes

Amnalysis | Task Tispatch Content

Applicable Periodic tasks

Table Driven Drispatched by the table

Static - - - - —
Priority Driven Static or dynamic Priority
Planning Based Feasi}:)ility ig checked at
. run-tune
Dynamic

Feas=sibility 1s nnot guaranteed

Best E ffort Task may be aborted

Preemptive (DM, RM, EDF, etc) :

2.3 Adopted Scheduling Paradigm Via Formal Comparison

Qur examination of the schedulability of various event paradigms considered the
static priority driven scheduling. Initially, a set of independent periodic processes,
where independent means that the processes do not have synchronization
requirements and periodic means the processes are initiated at regular periods and
have deadlines at the end of the period. The several static preemptive scheduling
approaches are described as follows.
Deadline-Monotonic (DM) : A static priority scheme in which tasks with shorter
relative deadlines have higher priorities.
Rate-Monotonic (RM) : A static-priority scheme in which tasks with shorter periods
have higher priorities.
Earliest-Deadline-First (EDF) : A dynamic-priority scheme in which, at any given
instant, the task that has the closest deadline has highest priority

In the paper [1: Anderson et. all, described that the comparing the overhead of

lock-free object sharing under RM scheduling with the overhead of the lock-based
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priority ceiling protocol(PCP). Under the PCP, the worst-case blocking time equals
the time required to execute the longest critical section. From this, we denote the

schedulability condition for periodic tasks using the PCP as,

PCP=Vidt: o<t < piir+ Z‘ [t—] (uj + m; -1y <t, where [Eq. 3]
=Lop
u; * m; - r ' the computation time of task 7,

In the above equation, the first term on the left-hand side represents the blocking
factor. The expression on the left-hand side represents the maximum demand due to
T; and higher priority tasks in a interval of length &

In the paper [3: Klein et. al] showed the non-preemptibility is a source of blocking.
If consider the case where processes is not only performed in a mutually exclusive
manner, but is also non-prermptible. Perhaps the process iIs non-preemptible because
of object requirements or merely because the process was implemented in this
manner. All other assumptions remain the same. The non-preemptible sections
represent a source of blocking to higher priority tasks.

This consequences derived the preemptive scheduling and allocation strategy for
the simulation with formerly developed constraints.

However, The lock-free based on RM scheduling approach to real-time object
sharing that we investigated was done by previously some twenty years ago in the

real-time systems community. But this idea was forgotten for many vears.

3. Scheduling and Resource Allocation

3.1 Rate Monotonic Real-Time Scheduling

For many years, Rate Monotonic(RM) scheduling theory offers a set of engineering
principles for managing timing complexity.

The rate monotonic algorithm assumes priority-based preemptive scheduling where
a process’'s priority is based on its period.

To apply RM scheme in this simulation, it is assumed that task deadlines and
periods coincide, i.e., each invocation of a task must complete execution before the

next invocation that task begins.
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Under RM scheme, the conditions for the schedulability of a set of periodic tasks
that share lock-free objects were formerly investigated. For brevity, the proof of this
condition is omitted here, and the formal proof of theorems can be found in [1].

From the previous research, the following two theorems give the necessary and
sufficient conditions for the scheduling by KM scheme in this simulation.

Theorem 3.1. (Necessity under RM) If set of periodic tasks that share lock-free
objects is schedulable under the RM scheme, then the following condition holds for

every task T
[ t
Jti0<t<p D= gt
=1 P

The left-hand side of the quantified expression gives the minimum demand -
which arises when there are no interferences - placed on the processor by 7, and
higher-priority tasks in the interval [0, t] where 0 < ¢t < p,. The right-hand side
gives the available processor time in that interval.

Theorem 3.2. (Sufficiency under EM) A set of periodic tasks that share lock-free
objects is schedulable under the RM scheme if the following condition holds for

every task T

| o

1 — t-1
St 0<t s DI g ¢+ D—1 -s =t
=1 =1 p

Dj
where

N ! The number of tasks in the system
i, j : Task indices quantified over {1,...N}

pi © The period of task T, p: < pj = 1 < j

T; ¢ i task in the system

¢i © The computational cost of task T3

s : The execution time required for one loop iteration in the implementation of a

lock-free object, which for simplicity is assumed to be the same for all objects

3.2 Time Stamp Event Ordering

We limited dynamic event occurrence and execution by time stamp. Each event is

- 204 -



able to access a clock and acquire the estimate of the current logical time Fi(t)=t+ &
i(f), through the time service. F(f) is the monotonic function that maps real-time to
logical time and i is the latency by the network and operating system overhead.

Using time stamp, the events can be isolated as a task only when they do not
overlap other tasks where the overlap is with respect to time or shared objects. The
following definitions describe the time stamp and serialized event execution.
Definition 3.1. A time-stamp is a real number that represents the occurrence time
of an instantaneous event, and is an indivisible entity.

Definitions 3.2. There are two binary relations between time stamp.

7a < 7p (ra before ) and its inverse rq. > zgp (7o after rp)
Ta= Tp
Definition 3.3. An execution 7 is a serial execution, Serial(T), of task T iff :

Ve, ¢ €T 1 [#] —

UVfic) € e, fU, ¢) Ee * {i,c), fj, ¢)) ERY A [Vfli,ed ey, fU, o) Ee5 1 (),

o), fU,c)) €R].

It must be possible to order the tasks T, T%..T. such that T; accesses the initial
state of database, and T2 accesses the database that would have been produced if T;
had run to completion.
Theorem 3.3. A property of serial executions, which is a requirement for
event-driven simulation, is that each event executes upon a consistent database state.
This property holds assuming the initial database state dp is consistent, and the
event 1s executed in isolation, it will preserve the database consistency, and the
system doesn’t allow for the existence of arbitrary states after the execution of
transactions.
Proof : A consistent database state d. will be obtained from the initial, consistent
database state dp if the events are executed serially, since there will be an ordering
of the tasks Ti, T32.,Tn, such that 7, sees the initial state dp, for each i > 1
transactions 7; sees the consistent state, d; that will be produced by running 77,
Ts,..., Tn sequentially to completion, and d, is the state produced by T .

In the simulation, events are delivered to Event-Handler in time stamp order. Thus

the events will not be processed until the event with a smaller time stamp being
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remained. To accomplish this approach, Event-Handler will hold incoming events in
its queue by the time stamp and also ensure that no event is delivered to a
Event—-Handler containing a time stamp less than the system’s current logical time.
This eliminates certain temporal anomalies that might otherwise occur when various
clients send different ordering events. And each event has only convex(contiguous)

execution duration with consistent database in this simulation.

3.3 Lock—free Object Sharing

The best object allocation is assigning the object to T in times | w-t ] or Jw -t ]
of the first ¢ slots for all.

Traditionally, the simulation models used lock-based objects under various
scheduling. The performance of lock-free and lock-based approaches were described
in [11. In this paper, given hardware support for primitives of compare & swap, the
result of value s in lock-free object approach varies from 1.3 Usecs for a counter, to
3.3 usecs for a circular queue. In contrast, lock-based implementations fared much
worse in a recent performance comparison of commercial real-time operating
systems. Although this result cannot be regarded as definitive, they do give some
indication as to the added overhead when operating system based locking
mechanisms are used.

Formal comparison can be derived through [Eq. 3] in section 2.3. Representative
lock~free operations are usually implemented using "retry loops,” such as <Figure 1>.

Vit j<ii(m+1l)s < m «r A PCP [Eq. 4]

{substitute (m; + 1) - s for my -r in PCP }

L. w
= Vigt:io<t < p: 2[[—] (uj + mj-s) + :2[_] -5 + 17 =t [Eq. 5]
7=1 pj =1 p;

= Vidt:io < {

1A

ot =1 t-1
P Bl Wm0 s s XS s <0 (B 6]
= 'o =1 Di

Because ¢ = u; + m;j - s in the lock-free case, the last expression in this derivation
is equivalent to the scheduling condition of theorem 2. In this case, s < r/2 implies
that

Vit i

1A

Prlmp+1)s < m -r
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since, for positive my, % < m; / (m; + 1) < 1.

Thus if the time taken to execute one iteration “of a lock—free retry loop is less
than half the time it takes to access a lock-based object under the PCP, then any
task set that is schedulable under the PCP is also schedulable when using lock-free
objects. In [Eq. 4], s is the cost of one lock-free retry loop.

In Figure 1, a message is inserted in the buffer by using a write instruction to
update the buffer status by changing a tail pointer and either the next pointer of the
last item in the buffer or a head pointer, depending on whether the buffer is empty.
This loop is executed repeatedly until the write instruction succeeds.

The buffer is not explicitly locked by any task, so it is essential property of
lock-free implementations that operations may interfere with each other. An
interference results in this example when a successful write by on task results in a
failed write by another task. However, it is not immediately apparent that lock-free

shared objects can be employed of tasks must adhere to strict timing constraints.

Figurel.Lock-freeSharedBuffer

class SharedBuffer

public variable

Head, Tail : pointer

AccessKey ! Integer

method write (stream)

private wvariable

Old, New : pointer

do
if Old !'= Null then add stream;
else add stream:; send signal;

until EventRemaind()

3.4 Guaranteed Worst-Case Response

One of the most distinguishing feature of the static priority scheduling is that it
can't provide guaranteed timely services to real-time applications when the

importance of task is changed. The dynamic or adaptive scheduling might resolve

this problem.
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When the cumulative request of all tasks of an object exceeds the capacity of the
object, we extends the scheduling  strategy with an amendments. It is to identify a
maximal subset of the requesting tasks whose requests can all be accommodated. If
all the requests made of an object of capacity C sum to R, B > C, each task is
offered a fraction C/R of its requested capacity. Then the Time Advance Request

will change the progress ratio adaptively to extend the capacity C.

4. Experimental Results

4.1 Modeling Feature

Regiment And Battalion Tactics Simulation were fielded by Army from 1995 to
1997, providing regiment and battalion commanders and their staff with training in
combat and battlefield operations and procedures of the tactical decision
establishment. These simulation exercises maneuver, fire support, air defense,
engineer, tactical air, Army aviation, logistics, maintenance, personnel administration,

and higher headquarters functions.

100Hz (Internal I/O Device)

Hardware Clock
10 msec progres‘;

——-% [Probc I~IandlcT’ Loﬁwarc Clock

100 probes / Sec ﬁ ﬁ @

[ Unix Kemel j LF imer Functi@
g 4
([ Memory ] [Logical Time |

Figure 2. Logical time generation

The simulation model is constructed on single CPU Sun Ultra-workstation and
IBM PCs connected via local network for clients. The clients have their own
Geographical Information System{GIS) module and user interaction components to
transmit the events and receive the result messages.

For the logical time in this simulation system, we use the Unix software
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clock(Solaris clock) and distribute the logical time to all processes to synchronize the
entire system. This time service called Time Advance Grant(TAG) distribute the
logical time each minute by the progress ratio. Also, sometimes the progress ratio
would be changed by the client request and then this task will update the scale
factor of software clock either gathering the logical time or loosing time through
Time Advance Request (TAR).

Each event has time stamp by the logical time and ordered by its time stamp

before input to the event queue,

Game Status Save
Alert Message | Game Start / Restart

+ 1
1 i
. )
) '
] 1
. Time Progress Ratio Change Real-Time !
' ~

: i Orders Channel !
' Real-Time Spot Mcessages !
! Message Clock Message :
X Unit Status Retrieval )
! - pes . - - MNon .
! M™Non Real-"T'ime| Report C:e_ner&}tu:)n Real-Time '
\ Message Database Retrieval Channel !
1

1 1

Table 2. Messages and channels

Lock-free scheme as described, the shared memory is widely used for the message
transmission among the processes and clients which are attached via the network
and controlled by Network Daemon.

The Event-Handler & Game Controller has the key role of simulation both for
the logical computational result and the control of event processing (ordering,
retraction, etc). The Figure 3 depicts the highest level of the main program of the
simulation.

For the client, the display of the terrain and units with volatile messages is the
essential component module. The Figure 4 shows the current display screen image.

The terrain is represented by a 100 meter feature with 50 meter elevation grid data
consistent with the 1:50K scale topographic map. The play areas range in scale from
1:25K to 1:100K, although the usual scale is at 1:50K. This huge database is the
important parameter for the precise simulation results. To display of the terrain, we
used our own GIS module for the clients. However, the details of client component is

beyvond of this paper.
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RT Channel
Event Handler B D;E\
Nerwork Game Controller Manager | J
Manager i

B

Non RT Channel

Figure 4. The display of client screen

Figure 3. Top-Level Software
Architecture

4.2 Network Manager

In the simulation, there are threia- classes of messages with different requirements.
We can classify three message classes as following.

Alert messages are aperiodic and have strict delivery time constraints. They are
considered to represent critical conditions, hence they are allowed to interfere with
normal task executions. Messages in this class requires the guaranteed transmission
routes to guard against transmission errors and components failures.

Real-time messages, also have: time-constraints on their delivery time. These
include both periodic and aperiodic messages. An important subclass of this are the
Clock Messages which are exchanged between processes as part of a clock
synchronization procedures. The arrival pattern for aperiodic messages can be
specified using a pessimistic estimate for the minimum inter-arrival time. We assume
that an occasional loss of messages, due to transmission errors or because of a
time—-constraint violation caused by the presence of Alert Messages, is permissible
for real-time messages. This may occur in the real battlefield by the unexpectable
communication failure.

Messages of the third class do not have hard time-constraints, so their scheduling
and routing is much more flexible. This class also includes messages without any

expressed timing constraints, like those found in general purpose client-server
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systems. The system has separate transmission chanmnel for this purpose. It is only
required to provide "best-effort” delivery for these messages.

The communication system has to support all three types of messages. In <Figure
3>, there are two message channels. One for first and second class messages and
the other is third class messages. In these three types, real-time messages pose
many problems because they require delivery time guarantees. Hence, we designed
special communication Network Manager(NM) which is oriented toward real-time
messages, and I-Net daemon has the responsibility of the third class messages.

NM maintains state information for all clients in the system and implements the
channel establishment scheme outlined in Figure 3. The NM maintains several
structures which are vital to the channel establishment procedure. A table containing
the Client ID and the resource requirements for all existing channels in the system.
For the non real-time messages, channel establishment is a local operation. The
parameters of the channel are stored in a session structure, so that they can be used
during the actual message transmission. The mechanism used for the transmission

of these messages is described in [2].

4.3 Database Manager

Databases are partial models that provides a means to record facts about particular

aspects of the simulation. Implicitly, database have state and at every instant the
database state is the collection of all the facets it contains.
However, just as a model changes to remain current, so must a database change.
Changes are introduced into a database by the execution of Datanase Daemon{(DD).
DD is a program that access and manipulate the Informix Daemon for the database
transactions, As changes occur, the transaction system insures the preservation of
the database’s consistency. But, in this paper, we omit the data gathering and report
generating component which is important part of the client operation.

As described in section 4.2, the system is consisted with a separate data gathering
and reporting communication channel, which trigger the database engine directly.
This means that the simulation system has unpredictable long-termm events. This

infrastructure constitutes the basis for aggregation of simulation results and reporting
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of the running system under real application load.

4.4 Current Status

Various problems exist when attempting to convert a non real-time operating
system to a real-time version. These problems can exist both at the system interface
as well as in the implementation. In particular, the POSIX P.1003.4 subcommittee is
defining standards for real-time operating system. To date, the effort has focused on
eleven important real-time related functions; timers, priority scheduling, shared
memory, real-time files, semaphores, interprocess communication, asynchronous event
notification, process memory locking, asynchronous IO, synchronous 10, and threads.

However, we developed the real-time simulation on commercially available
operating system. In the near future, a common approach which is to encapsulate
software scheduling algorithms into a fast but general purpose operating system,
called a Real-Time Operating System (RTOS) will solve many problems of
scheduling and allocation. The basic idea is to provide the functionality needed by
real-time software systems without the large overhead associated with traditional
operating systems. A good overview of RTOS research in scheduling algorithms is
contained in [1][7].

The GIS module with VPF format digital maps is currently under development.

5. Concluding Remarks

Scheduling real-time computations is an extremely important part of a real-time
system because it is the phase in which we assign the actual temporal properties to
the computations. The time management structure of this simulation system is
intended to support interoperability among heterogeneous platforms utilizing different
internal time management mechanisms, Thus the logical time of the simulation is
precisely guaranteed not only for the master game controller but also for the clients.
Eventually this execution support distributed time advance mechanism for the next
generation distributed simulation model in [9]. And our preliminary results proved

that the lock-free shared object with static priority scheduling is affordable for the
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real-time simulation on uni-processor system. These efforts will remove special
hardware and the problem-oriented real-time operating system support for the
wargame area. However, this scheme needs further experiment to decide if it can be
effectively applied to the hard real time simulation.

If the real-time Kernel contains a scheduler with a priority scheduling algorithm, a
dispatcher which controls the task switch mechanism, a wait queue for inactive
tasks, a wait queue for tasks waiting for a time event, and a ready queue described
in this paper, then the simulation system will exclude additional effort of developing
game control mechanisms.

The formal comparisons and progresses of the scheduling method is the ongoing
job in this area. Our objective is to provide and support an abstraction which allows
expression of the hardware and software requirements of real-time applications.
Specifically, we consider the issue of guaranteeing the delivery of message objects

with time constraints with the correct computational results presently.
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