• Title/Summary/Keyword: Event Tree Analysis

Search Result 191, Processing Time 0.021 seconds

Analysis of Power System Wide-Area Blackout based on the Fault Cascading Scenarios (고장파급 시나리오에 기초한 광역정전 해석기법 연구)

  • Park, Chan-Eom;Kwon, Byeong-Gook;Yang, Won-Young;Lee, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.155-163
    • /
    • 2008
  • This paper presents a novel framework for analysis of power system wide-area blackout based on so called fault cascading scenarios. For a given power system operating state, "triggering" faults or a "seed faults" are chosen based on the probabilities estimated from the hazard rates. The fault probabilities reflect both the load and the weather conditions. Effects of hidden failures in protection systems are also reflected in establishing the fault propagation scenarios since they are one of the major causes for the wide-area blackouts. A tree type data structure called a PS-BEST(Power System Blackout Event Scenario Tree) is proposed for construction of the fault cascading scenarios, in which nodes represent various power system operating states and the arcs are the events causing transitions between the states. Arcs can be either probabilistic or deterministic. For a given initial fault, the total probability of leading to wide-area blackout is estimated by aggregating the individual probability of each fault sequence route leading to wide-area blackout. A case study is performed on the IEEE RTS-79(24 bus) system based on the fault data presented by the North American Electrical Reliability Council(NERC). Test results demonstrate the potentials and the effectiveness of the proposed technique for the future wide-area blackout analysis.

Evaluation Model of Service Reliability Using a Service Blueprint and FTA (서비스 블루프린트와 FTA를 이용한 서비스 신뢰도 평가모델)

  • Yoo, Jung-Sang;Oh, Hyung-Sool
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.194-201
    • /
    • 2012
  • Because the difference between products and services are getting less and less, service and manufacturing companies' efforts are increasingly focused on utilizing services to satisfy customers' needs under today's competitive market environment. The value of services depends on service reliability that is identified by satisfaction derived from the relationship between customer needs and service providers. In this paper, we extend concepts from the fault tree analysis for reliability analysis of tangible systems to services. We use an event-based process model to facilitate service design and represent the relationships between functions and failures in a service. The objective of this research is to propose a method for evaluating service reliability based on service processes using service blueprint and FTA. We can identify the failure mode of service in a service delivery process with a service blueprint. The fuzzy membership function is used to characterize the probability of failure based on linguistic terms. FTA is employed to estimate the reliability of service delivery processes with risk factors that are represented as potential failure causes. To demonstrate implementation of the proposed method, we use a case study involving a typical automotive service operation.

Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method

  • Fang Zhao ;Shuliang Zou ;Shoulong Xu ;Junlong Wang;Tao Xu;Dewen Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4560-4570
    • /
    • 2022
  • Dynamic fault tree (DFT) and its related research methods have received extensive attention in safety analysis and reliability engineering. DFT can perform reliability modelling for systems with sequential correlation, resource sharing, and cold and hot spare parts. A technical modelling method of DFT is proposed for modelling ship collision accidents and loss-of-coolant accidents (LOCAs). Qualitative and quantitative analyses of DFT were carried out using the cutting sequence (CS)/extended cutting sequence (ECS) method. The results show nine types of dynamic fault failure modes in ship collision accidents, describing the fault propagation process of a dynamic system and reflect the dynamic changes of the entire accident system. The probability of a ship collision accident is 2.378 × 10-9 by using CS. This failure mode cannot be expressed by a combination of basic events within the same event frame after an LOCA occurs in a marine nuclear reactor because the system contains warm spare parts. Therefore, the probability of losing reactor control was calculated as 8.125 × 10-6 using the ECS. Compared with CS, ECS is more efficient considering expression and processing capabilities, and has a significant advantage considering cost.

Damage identification in suspension bridges under earthquake excitation using practical advanced analysis and hybrid machine-learning models

  • Van-Thanh Pham;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.695-711
    • /
    • 2024
  • Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.

Prediction of Landslide Probability around Railway using Decision Tree Model (Decision Tree model을 이용한 철도 주변 산사태 발생가능성 예측)

  • Yun, Jung-Mann;Song, Young-Suk;Bak, Gueon Jun;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.129-137
    • /
    • 2017
  • In this study, the prediction of landslide probability was performed to the study area located in ${\bigcirc}{\bigcirc}$ area of Muan-gun, Jeonnam Province around Honam railway using the computer program SHAPP ver 1.0 developed by a decision tree model. The soil samples were collected at total 8 points, and soil tests were performed to measure soil properties. The thematic maps of soil properties such as coefficient of permeability and void ratio were made on the basis of soil test results. The slope angle analysis of topography was performed using a digital map. As the prediction result of landslide probability, 435 cells among total 15,552 cells were predicted to be in the event of landslides. Therefore, the predicted area of occurring landslides may be $43,500m^2$ because the analyzed cell size was $10m{\times}10m$.

Study on the Transport Reliability Concerning Risks Scenarios (위험사건(Risk)발생 시나리오를 고려한 운송 신뢰성 연구)

  • Kim, Eun-Ji;Ganbat, Enkhtsetseg;Kim, Hwan-seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.256-257
    • /
    • 2015
  • The trend of globalization and the development of the communication-Information technology not only complexified the supply chain, but also, led to the needs of the high quality of logistics service for customers. I t defines risks that can occur in truck transport under unexpected situation with Fault Tree Analysis(FTA) and calculates failure rate concerning relationship between each risks. Based on the 4 kinds of middle failure events that defined in FTA, Reliability function which is regarded about risks sequentiality and time flow is resulted in. I t is meaningful that it calculates reliability of logistics and transportation system with engineering methodology.

  • PDF

Improvement Strategy of System Unavailability by Review of Logical Structure and Reliability Importance of Reliability Block Diagram (RED) and Fault Tree Analysis (FTA) (RBD와 FTA의 논리구조와 신뢰성 중요도의 고찰에 의한 시스템 비시간가동률 개선방안)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.45-53
    • /
    • 2011
  • The research proposes seven elimination rules of redundant gates and blocks in Fault Tree Analysis (FTA) and Reliability Block Diagram (RBD). The computational complexity of cut sets and path sets is NP-hard. In order to reduce the complexity of Minimal Cut Set (MCS) and Minimal Path Set (MPS), the paper classifies generation algorithms. Moreover, the study develops six implementation steps which reflect structural importance (SI) and reliability importance (RI) from Reliability Centered Maintenance (RCM) that a priority of using the functional logic among components is to reduce (improve) the system unavailability (or availability). The proposed steps include efficient generation of state structure function by Rare Event Enumeration (REA). Effective use of importance measures, such as SI and ill measures, is presented based on the number and the size of MCS and MPS which is generated from the reference[5] of this paper. In addition, numerical examples are presented for practitioners to obtain the comprehensive understanding of six steps that is proposed in this research.

Estimation of Accident Probability for Dynamic Risk Assessment (동적 위험 분석을 위한 사고확률 추정 방법에 관한 연구)

  • Byeong-Cheol Park;Chae-Og Lim;In-Hyuk Nam;Sung-Chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.315-325
    • /
    • 2023
  • Recently, various dynamic risk analysis methods have been suggested for estimating the risk index by predicting the possibility of accidents and damage. It is necessary to maintain and support the safety system for responding to accidents by continuously updating the probability of accidents and the results of accidents, which are quantitative standards of ship risk. In this study, when a LNG leakage that may occur in the LN G Fuel Gas Supply System (FGSS) room during LN G bunkering operation, a reliability physical model was prepared by the change in monitoring data as physical parameters to estimate the accident probability. The scenario in which LNG leakage occur were configured with FT (Fault Tree), and the coefficient of the covariate model and Weibull distribution was estimated based on the monitoring data. The possibility of an LNG leakage, which is the top event of FT, was confirmed by changes in time and monitoring data. A method for estimating the LNG leakage based on the reliability physical analysis is proposed, which supports fast decision-making by identifying the potential LNG leakage at the accident.

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy (HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1208-1217
    • /
    • 2019
  • The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

Decision of Maintenance Priority Order for Substation Facility through Structural Importance and Fault Analysis (변전설비의 구조적 중요도와 고장 분석을 통한 유지보수 우선순위 선정)

  • Lee, Sung-Hun;Lee, Yun-Seong;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.23-30
    • /
    • 2013
  • Reliability Centered Maintenance(RCM) is one of most widely used methods in the modern power system to schedule a maintenance cycle and determine the priority of inspection. A precedence study for the new structure of rearranged system should be performed due to introduction of additional installation. This paper proposes a new method to evaluate the priority of maintenance and inspection of the power system facilities. In order to calculate that risk index, it is required that the reliability block diagram should be analyzed for the power system. Additionally, a fault cause analysis is also performed through the event-tree analysis.