DOI QR코드

DOI QR Code

Damage identification in suspension bridges under earthquake excitation using practical advanced analysis and hybrid machine-learning models

  • Van-Thanh Pham (Department of Civil and Environmental Engineering, Sejong University) ;
  • Duc-Kien Thai (Faculty of Civil Engineering, Thuyloi University) ;
  • Seung-Eock Kim (Faculty of Civil Engineering, Thuyloi University)
  • Received : 2024.08.08
  • Accepted : 2024.09.23
  • Published : 2024.09.25

Abstract

Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.

Keywords

Acknowledgement

The research described in this paper was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2B5B01002577).

References

  1. Ali, R., Muayad, M., Mohammed, A.S. and Asteris, P.G. (2023), "Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches", Struct. Concr., 24(3), 4161-4184. https://doi.org/10.1002/suco.202200718.
  2. Alkayem, N.F., Shen, L., Mayya, A., Asteris, P.G., Fu, R., Di Luzio, G. and Cao, M. (2024), "Prediction of concrete and FRC properties at high temperature using machine and deep learning: A review of recent advances and future perspectives", J. Build. Eng., 83, 108369. https://doi.org/10.1016/j.jobe.2023.108369.
  3. Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two non-destructive test indexes", Geomech. Eng., 25(4), 317-330. https://doi.org/10.12989/gae.2021.25.4.317.
  4. Asgarieh, E., Moaveni, B. and Stavridis, A. (2014), "Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake", J. Sound Vib., 333(23), 6057-6073. https://doi.org/10.1016/j.jsv.2014.04.064.
  5. Asgarieh, E., Moaveni, B., Barbosa, A.R. and Chatzi, E. (2017), "Nonlinear model calibration of a shear wall building using time and frequency data features", Mech. Syst. Signal Process., 85, 236-251. https://doi.org/10.1016/j.ymssp.2016.07.045.
  6. Asteris, P.G., Maraveas, C., Chountalas, A.T., Sophianopoulos, D. S. and Alam, N. (2022), "Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions", Steel Compos. Struct., 44(6), 769-788. https://doi.org/10.12989/scs.2022.44.6.769.
  7. Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P. and Pilakoutas, K. (2021), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cem. Concr. Res., 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449.
  8. Barkhordari, M.S., Armaghani, D.J. and Asteris, P.G. (2023), "Structural damage identification using ensemble deep convolutional neural network models", C. - Comput. Model. Eng. Sci., 134(2), 835-855. https://doi.org/10.32604/cmes.2022.020840.
  9. Beer, M., Kougioumtzoglou, I.A., Patelli, E. and Au, S.K. (2015), "Encyclopedia of earthquake engineering", https://doi.org/10.1007/978-3-642-36197-5_320-1.
  10. Benzaamia, A., Ghrici, M., Rebouh, R., Pilakoutas, K. and Asteris, P.G. (2024), "Predicting the compressive strength of CFRP-confined concrete using deep learning", Eng. Struct., 319, 118801. https://doi.org/10.1016/j.engstruct.2024.118801.
  11. Bui, V.T., Truong, V.H., Trinh, M.C. and Kim, S.E. (2020), "Fully nonlinear analysis of steel-concrete composite girder with web local buckling effects", Int. J. Mech. Sci., 184(January), 105729. https://doi.org/10.1016/j.ijmecsci.2020.105729.
  12. Bui, V.T., Vu, Q.V., Truong, V.H. and Kim, S.E. (2021), "Fully nonlinear inelastic analysis of rectangular CFST frames with semi - rigid connections", Steel Compos. Struct., 38(5), 497-521. https://doi.org/10.12989/scs.2021.38.5.497.
  13. Cavaleri, L., Barkhordari, M.S., Repapis, C.C., Armaghani, D.J., Ulrikh, D.V. and Asteris, P.G. (2022), "Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete", Constr. Build. Mater., 359, 129504. https://doi.org/10.1016/j.conbuildmat.2022.129504.
  14. Chang, K.C., Mo, Y.L., Chen, C.C., Lai, L.C. and Chou, C.C. (2004), "Lessons learned from the damaged Chi-Lu cable-stayed bridge", J. Bridg. Eng., 9(4), 343-352. https://doi.org/10.1061/(asce)1084-0702(2004)9:4(343).
  15. Chen, T. and Guestrin, C., (2016), "XGBoost: A scalable tree boosting system", Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785.
  16. Chen, W.-F. and Duan, L., (2014), Bridge Engineering Handbook Seismic Design, https://doi.org/10.1201/b15663.
  17. Chencho, Li, J., Hao, H., Wang, R. and Li, L. (2021), "Development and application of random forest technique for element level structural damage quantification", Struct. Control Heal. Monit., 28(3), 1-19. https://doi.org/10.1002/stc.2678.
  18. Cross, E.J., Koo, K.Y., Brownjohn, J.M.W. and Worden, K. (2013), "Long-term monitoring and data analysis of the Tamar Bridge", Mech. Syst. Signal Process., 35(1), 16-34. https://doi.org/10.1016/j.ymssp.2012.08.026.
  19. Dackermann, U., Smith, W.A. and Randall, R.B. (2014), "Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks", Struct. Heal. Monit., 13(4), 430-444. https://doi.org/10.1177/1475921714542890.
  20. Ding, Z.H., Huang, M. and Lu, Z.R. (2016), "Structural damage detection using artificial bee colony algorithm with hybrid search strategy", Swarm Evol. Comput., 28, 1-13. https://doi.org/10.1016/j.swevo.2015.10.010.
  21. Dorogush, A.V., Ershov, V. and Gulin, A. (2018), "CatBoost: gradient boosting with categorical features support", ArXiv, 1-7.
  22. Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory, MHS'95", Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43. Ieee.
  23. Ebrahimian, H., Astroza, R., Conte, J.P. and de Callafon, R.A. (2017), "Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation", Mech. Syst. Signal Process., 84, 194-222. https://doi.org/10.1016/j.ymssp.2016.02.002.
  24. Ereiz, S., Duvnjak, I. and Fernando Jimenez-Alonso, J. (2022), "Review of finite element model updating methods for structural applications", Structures, 41(May), 684-723. https://doi.org/10.1016/j.istruc.2022.05.041.
  25. Feng, M. (2009), China's Major Bridges, IABSE Workshop: Recent Major Bridges, 1-24. https://doi.org/10.2749/222137809796089304.
  26. Freund, Y. and Mason, L. (1999), "The alternating decision tree learning algorithm", Proceedings of the Sixteenth International Conference on Machine Learning, 99, 124-133.
  27. Friedman, J.H. (2001), "Greedy function approximation: A gradient boosting machine", Ann. Stat., 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451.
  28. Gu, Q., Barbato, M., Conte, J.P., Gill, P.E. and McKenna, F. (2012), "OpenSees-SNOPT framework for finite-element-based optimization of structural and geotechnical systems", J. Struct. Eng., 138(6), 822-834. https://doi.org/10.1061/(asce)st.1943-541x.0000511.
  29. Guo, H.Y. and Li, Z.L. (2012), "Structural damage identification based on Bayesian theory and improved immune genetic algorithm", Expert Syst. Appl., 39(7), 6426-6434. https://doi.org/10.1016/j.eswa.2011.12.023.
  30. Hajihassani, M., Armaghani, D.J. and Kalatehjari, R. (2018), "Applications of particle swarm optimization in geotechnical engineering: a comprehensive review", Geotech. Geol. Eng., 36(2), 705-722.
  31. Hawkins, D.M. (2004), "The problem of overfitting", J. Chem. Inf. Comput. Sci., 44(1), 1-12. https://doi.org/10.1021/ci0342472.
  32. Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306.
  33. Hossain, M.S., Ong, Z.C., Ismail, Z., Noroozi, S. and Khoo, S.Y. (2017), "Artificial neural networks for vibration based inverse parametric identifications: A review", Appl. Soft Comput. J., 52, 203-219. https://doi.org/10.1016/j.asoc.2016.12.014.
  34. Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronaut. Sci., 17(9), 540-550. https://doi.org/10.2514/8.1722.
  35. Jang, J. and Smyth, A.W. (2017), "Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters", Mech. Syst. Signal Process., 83, 337-355. https://doi.org/10.1016/j.ymssp.2016.06.018.
  36. Kardani, N., Bardhan, A., Samui, P., Nazem, M., Asteris, P.G. and Zhou, A. (2022), "Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients", Int. J. Therm. Sci., 173, 107427. https://doi.org/10.1016/j.ijthermalsci.2021.107427.
  37. Kim, S.E. and Thai, H.T. (2010), "Nonlinear inelastic dynamic analysis of suspension bridges", Eng. Struct., 32(12), 3845-3856. https://doi.org/10.1016/j.engstruct.2010.08.027.
  38. Ko, J.M. and Ni, Y.Q. (2005), "Technology developments in structural health monitoring of large-scale bridges", Eng. Struct., 27(12 SPEC. ISS.), 1715-1725. https://doi.org/10.1016/j.engstruct.2005.02.021.
  39. Li, Y., Astroza, R., Conte, J.P. and Soto, P. (2017), "Nonlinear FE model updating and reconstruction of the response of an instrumented seismic isolated bridge to the 2010 Maule Chile earthquake", Earthq. Eng. Struct. Dyn., 46(15), 2699-2716. https://doi.org/10.1002/eqe.2925.
  40. Li, Z., Feng, M.Q., Luo, L., Feng, D. and Xu, X. (2018), "Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data", Mech. Syst. Signal Process., 98, 352-367. https://doi.org/10.1016/j.ymssp.2017.05.005.
  41. Lin, H., Xiang, Y. and Jia, Y. (2018), "Study on health monitoring system design of cable-stayed bridge", Sustain. Civ. Infrastruct., 1(Wong 2004), 42-54. https://doi.org/10.1007/978-3-319-61914-9.
  42. Lin, K., Xu, Y. L., Lu, X., Guan, Z. and Li, J., (2020), "Time history analysis-based nonlinear finite element model updating for a long-span cable-stayed bridge", Struct. Heal. Monit. https://doi.org/10.1177/1475921720963868.
  43. Liu, D., Tang, Z., Bao, Y. and Li, H., (2021), "Machine-learning-based methods for output-only structural modal identification", Struct. Control Heal. Monit., 28(12). https://doi.org/10.1002/stc.2843.
  44. Materazzi, A.L. and Ubertini, F. (2011), "Eigenproperties of suspension bridges with damage", J. Sound Vib., 330(26), 6420-6434. https://doi.org/10.1016/j.jsv.2011.08.007.
  45. Mehrjoo, M., Khaji, N., Moharrami, H. and Bahreininejad, A., (2008), "Damage detection of truss bridge joints using artificial neural networks", Expert Syst. Appl., 35(3), 1122-1131. https://doi.org/10.1016/j.eswa.2007.08.008.
  46. Miguel, L.F.F., Miguel, L.F.F., Kaminski, J. and Riera, J.D. (2012), "Damage detection under ambient vibration by harmony search algorithm", Expert Syst. Appl., 39(10), 9704-9714. https://doi.org/10.1016/j.eswa.2012.02.147.
  47. Moehle, J. and Eberhard, M. (2000), "Earthquake damage to bridges", In Bridge Engineering Handbook. 876-906. Boca Raton, Florida: USA.: CRC Press.
  48. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 69-74. https://doi.org/10.1061/JMCEA3.0000098.
  49. Nguyen, V.-Q., Tran, V.-L., Nguyen, D.-D., Sadiq, S. and Park, D., (2022), "Novel hybrid MFO-XGBoost model for predicting the racking ratio of the rectangular tunnels subjected to seismic loading", Transp. Geotech., 37, 100878. https://doi.org/10.1016/j.trgeo.2022.100878.
  50. Ni, Y.-Q., Wang, J. and Chan, T.H.T. (2018), "Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: A feasibility study", Struct. Eng. Mech., 54(2), 337-362. https://doi.org/10.12989/SEM.2015.54.2.337.
  51. Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. https://doi.org/10.1016/j.engstruct.2018.05.109.
  52. Pham, V.-T., Thai, D.-K. and Kim, S.-E., (2024), "A novel procedure for cable damage identification of cable-stayed bridge using particle swarm optimization and machine learning", Struct. Heal. Monit.,. https://doi.org/10.1177/14759217241246501.
  53. Pham, V.T., Jang, Y., Park, J.W., Kim, D.J. and Kim, S.E. (2022), "Cable damage identification of cable - stayed bridge using multi - layer perceptron and graph neural network", Steel Compos. Struct., 44(2), 241-254. https://doi.org/10.12989/scs.2022.44.2.241.
  54. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V. and Gulin, A. (2018), "Catboost: Unbiased boosting with categorical features", Adv. Neural Inf. Process. Syst., 2018-Decem(Section 4), 6638-6648.
  55. Sarica, A., Cerasa, A. and Quattrone, A. (2017), "Random forest algorithm for the classification of neuroimaging data in Alzheimer's disease: A systematic review", Front. Aging Neurosci., 9, 329.
  56. Son, H., Yoon, C., Kim, Y., Jang, Y., Tran, L.V., Kim, S.E. and Park, J. (2022), "Damaged cable detection with statistical analysis, clustering, and deep learning models", Smart Struct. Syst., 29(1), 17-28. https://doi.org/10.12989/sss.2022.29.1.017.
  57. Thai, H.T. and Choi, D.H. (2011), "A fiber beam-column element for frame analysis", Proceedings of the 7th International Conference on Steel and Aluminium Structures ICSAS, 128-134.
  58. Thai, H.T. and Choi, D.H. (2011), "A fiber beam-column element for frame analysis", Mater. Sci. https://doi.org/10.3850/978-981-08-9247-0_rp017-icsas11.
  59. Thai, H.T. and Kim, S.E. (2007), "Practical nonlinear dynamic analysis of cable-stayed bridge", Construction, 10, 13-16.
  60. Thai, H.T. and Kim, S.E. (2008), "Second-order inelastic dynamic analysis of three-dimensional cable-stayed bridges", Steel Struct., 8, 205-214.
  61. Thai, H.T. and Kim, S.E. (2011a), "Nonlinear static and dynamic analysis of cable structures", Finite Elem. Anal. Des., 47(3), 237-246. https://doi.org/10.1016/j.finel.2010.10.005.
  62. Thai, H.T. and Kim, S.E. (2011b), "Practical advanced analysis software for nonlinear inelastic dynamic analysis of steel structures", J. Constr. Steel Res., 67(3), 453-461. https://doi.org/10.1016/j.jcsr.2010.09.009.
  63. Thai, H.T. and Kim, S.E. (2012), "Second-order inelastic analysis of cable-stayed bridges", Finite Elem. Anal. Des., 53, 48-55. https://doi.org/10.1016/j.finel.2011.07.002.
  64. Tran, V.-L. (2023), "Deep convolutional neural network-based transfer learning method for health condition identification of cable in cable-stayed bridge", J. Mater. Eng. Struct., 10, 5-18.
  65. Truong, V.H. and Kim, S.E. (2017), "An efficient method of system reliability analysis of steel cable-stayed bridges", Adv. Eng. Softw., 114, 295-311. https://doi.org/10.1016/j.advengsoft.2017.07.011.
  66. Vu, Q.V., Pham, V.T., Le, D.N., Kong, Z., Papazafeiropoulos, G. and Pham, V.-N. (2024), "Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns", Steel Compos. Struct., 52(2), 145-163. https://doi.org/10.12989/scs.2024.52.2.145.
  67. Wang, Y., Li, Z., Wang, C. and Wang, H. (2013), "Concurrent multi-scale modelling and updating of long-span bridges using a multi-objective optimisation technique", Struct. Infrastruct. Eng., 9(12), 1251-1266. https://doi.org/10.1080/15732479.2012.683198.
  68. Wickramasinghe, W.R., Thambiratnam, D.P. and Chan, T.H.T. (2020), "Damage detection in a suspension bridge using modal flexibility method", Eng. Fail. Anal., 107(July 2017), 104194. https://doi.org/10.1016/j.engfailanal.2019.104194.
  69. Wickramasinghe, W.R., Thambiratnam, D.P., Chan, T.H.T. and Nguyen, T. (2016), "Vibration characteristics and damage detection in a suspension bridge", J. Sound Vib., 375, 254-274. https://doi.org/10.1016/j.jsv.2016.04.025.
  70. Wilson, E.L., Farhoomand, I. and Bathe, K.J. (1972), "Nonlinear dynamic analysis of complex structures", Earthq. Eng. Struct. Dyn., 1(3), 241-252. https://doi.org/https://doi.org/10.1002/eqe.4290010305.
  71. Xu, Y.L. and Xia, Y. (2017), Structural Health Monitoring of Long-Span Suspension Bridges. CRC Press, London.
  72. Yeung, W.T. and Smith, J.W. (2005), "Damage detection in bridges using neural networks for pattern recognition of vibration signatures", Eng. Struct., 27(5), 685-698. https://doi.org/10.1016/j.engstruct.2004.12.006.
  73. Zhang, C., Cheng, L., Qiu, J., Ji, H. and Ji, J. (2019), "Structural damage detections based on a general vibration model identification approach", Mech. Syst. Signal Process., 123, 316-332. https://doi.org/10.1016/j.ymssp.2019.01.020.
  74. Zhang, L., Qiu, G. and Chen, Z. (2021), "Structural health monitoring methods of cables in cable-stayed bridge: A review", Meas. J. Int. Meas. Confed., 168(May 2020), 108343-1-7. https://doi.org/10.1016/j.measurement.2020.108343.
  75. Zheng, Y., Xu, Y. L. and Gu, Q. (2020), "Nonlinear model updating of a reinforced concrete pedestrian cable-stayed bridge", Struct. Control Heal. Monit., 27(3), 1-25. https://doi.org/10.1002/stc.2487.