• Title/Summary/Keyword: Event Tree

Search Result 290, Processing Time 0.028 seconds

Optimum Maintenance and Retrofit Planning for Reliable Seismic Performance of the Bridges (내진성능확보를 위한 교량의 최적유지보수계획법)

  • 고현무;이선영;박관순;김동석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.29-36
    • /
    • 2002
  • In the maintenance and retrofit planning of a bridge system, the optimal strategy for inspection and repair are suggested by minimizing the expected total life-cycle cost, which includes the initial cost, the costs of inspection, repair, and failure. Degradation of seismic performance is modeled by using a damage function. And failure probability is computed according to the degree of damage detection by random vibration theory and the event tree analysis. As an example to illustrate the proposed approach, a 10-span continuous bridge structure is used. The numerical results show that the optimum number of the inspection and the repair are increased, as the seismic intensity is increased and the soil condition of a site becomes more flexible.

Application Cases of Risk Assessment for British Railtrack System (영국철도시스템에 적용된 리스크평가 사례)

  • Lee, Dong-Ha;Jeong, Gwang-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.81-94
    • /
    • 2003
  • The British railway safety research group has developed a risk assessment model for the railway infrastructure and major railway accidents. The major hazardous factors of the railway infrastructure were identified and classified in the model. The frequency rates of critical top events were predicted by the fault tree analysis method using failure data of the railway system components and ratings of railway maintenance experts, The consequences of critical top events were predicted by the event tree analysis method. They classified the Joss of accident due to railway system into personal. commercial and environmental damages. They also classified 110 hazardous event due to railway system into three categories. train accident. movement accident and non-movement accident. The risk assessment model of the British railway system has been designed to take full account of both the high frequency low consequence type events (events occurring routinely for which there is significant quantity of recorded data) and the low frequency high consequence events (events occurring rarely for which there is little recorded data). The results for each hazardous event were presented in terms of the frequency of occurrence (number of events/year) and the risk (number of equivalent fatalities per year).

Development of Risk Assessment Models for Railway Casualty Accidents (철도 사상사고 위험도 평가 모델 개발에 관한 연구)

  • Park, Chan-Woo;Wang, Jong-Bae;Kim, Min-Su;Choi, Don-Bum;Kwak, Sang-Log
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.190-198
    • /
    • 2009
  • This study shows the developing process of the risk assessment models for railway casualty accidents. To evaluate the risks of these accidents, the hazardous events and the hazardous factors were identified by the review of the accident history and engineering interpretation of the accident behavior. The frequency of each hazardous event was evaluated from the historical accident data and structured expert judgments by using the Fault Tree Analysis (FTA) technique. In addition, to assess the severity of each hazardous event, the ETA (Event Tree Analysis) technique and other safety techniques were applied. The risk assessment models developed can be effectively utilized in defining the risk reduction measures in connection with the option analysis.

A top-down iteration algorithm for Monte Carlo method for probability estimation of a fault tree with circular logic

  • Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.854-859
    • /
    • 2018
  • Calculating minimal cut sets is a typical quantification method used to evaluate the top event probability for a fault tree. If minimal cut sets cannot be calculated or if the accuracy of the quantification result is in doubt, the Monte Carlo method can provide an alternative for fault tree quantification. The Monte Carlo method for fault tree quantification tends to take a long time because it repeats the calculation for a large number of samples. Herein, proposal is made to improve the quantification algorithm of a fault tree with circular logic. We developed a top-down iteration algorithm that combines the characteristics of the top-down approach and the iteration approach, thereby reducing the computation time of the Monte Carlo method.

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.

Development of the Risk Assessment Model for Railway Level-Crossing Accidents by Using The ETA and FTA (ETA 및 FTA를 이용한 철도 건널목사고 위험도 평가 모델 개발에 대한 연구)

  • Kim, Min-Su;Wang, Jong-Bae;Park, Chan-Woo;Cho, Yeon-Ok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.936-943
    • /
    • 2009
  • In this study, a risk assessment model based on the ETA (Event Tree Analysis) and FTA (Fault Tree Analysis) is developed according to the procedure of hazard analysis and risk assessment in order to estimate the risk quantitatively. The FTA technique is applied to estimate the branch probability (frequency) and the ETA technique is applied to estimate the consequence for each branch path on the ET (Event Tree). A risk assessment model is developed by the combination of those ETA and FTA. In addition, the reliability and the validity of the risk assessment model are verified by comparing the risk estimated through the developed model with the actual equivalent fatality.

Bus Reconfiguration Strategy Based on Local Minimum Tree Search for the Event Processing of Automated Distribution Substation (자동화된 변전소의 이벤트 발생시 준최적 탐색법에 기반한 모선 재구성 전략의 개발)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.565-572
    • /
    • 2004
  • This paper proposes an expert system which can enhance the accuracy of real-time bus reconfiguration strategy by adopting local minimum tree search method and minimize the spreading effect of the fault by considering totally the operating condition when a main transformer fault occurs in the automated substation. The local minimum tree search method to expand the best-first search method. This method has an advantage which can improve the performance of solution within the limits of the real-time condition. The inference strategy proposed expert system consists of two stages. The first stage determines the switching candidate set by searching possible switching candidates starting from the main transformer or busbar related to the event. And, second stage determines the rational real-time bus reconfiguration strategy based on heuristic rules for the obtained switching candidate set. Also, this paper studies the generalized distribution substation modelling using graph theory and a substation database is designed based on the study result. The inference engine of the expert system and the substation database is implemented in MFC function of Visual C++. Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and local minimum tree search solution based on diversity event simulations for typical distribution substation.

A new methodology for modeling explicit seismic common cause failures for seismic multi-unit probabilistic safety assessment

  • Jung, Woo Sik;Hwang, Kevin;Park, Seong Kyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2238-2249
    • /
    • 2020
  • In a seismic PSA, dependency among seismic failures of components has not been explicitly modeled in the fault tree or event tree. This dependency is separately identified and assigned with numbers that range from zero to unity that reflect the level of the mutual correlation among seismic failures. Because of complexity and difficulty in calculating combination probabilities of correlated seismic failures in complex seismic event tree and fault tree, there has been a great need of development to explicitly model seismic correlation in terms of seismic common cause failures (CCFs). If seismic correlations are converted into seismic CCFs, it is possible to calculate an accurate value of a top event probability or frequency of a complex seismic fault tree by using the same procedure as for internal, fire, and flooding PSA. This study first proposes a methodology to explicitly model seismic dependency by converting correlated seismic failures into seismic CCFs. As a result, this methodology will allow systems analysts to quantify seismic risk as what they have done with the CCF method in internal, fire, and flooding PSA.

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis (결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.187-195
    • /
    • 2009
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.