• Title/Summary/Keyword: Event State

Search Result 548, Processing Time 0.026 seconds

Toward the Application of a Critical-Chain-Project-Management-based Framework on Max-plus Linear Systems

  • Takahashi, Hirotaka;Goto, Hiroyuki;Kasahara, Munenori
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • We focus on discrete event systems with a structure of parallel processing, synchronization, and no-concurrency. We use max-plus algebra, which is an effective approach for controller design for this type of system, for modeling and formulation. Since a typical feature of this type of system is that the initial schedule is frequently changed due to unpredictable disturbances, we use a simple model and numerical examples to examine the possibility of applying the concepts of the feeding buffer and the project buffer of critical chain project management (CCPM) on max-plus linear discrete event systems in order to control the occurrence of an undesirable state change. The application of a CCPM-based framework on a max-plus linear discrete event system was proven to be effective.

Wide-Area SCADA System with Distributed Security Framework

  • Zhang, Yang;Chen, Jun-Liang
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.597-605
    • /
    • 2012
  • With the smart grid coming near, wide-area supervisory control and data acquisition (SCADA) becomes more and more important. However, traditional SCADA systems are not suitable for the openness and distribution requirements of smart grid. Distributed SCADA services should be openly composable and secure. Event-driven methodology makes service collaborations more real-time and flexible because of the space, time and control decoupling of event producer and consumer, which gives us an appropriate foundation. Our SCADA services are constructed and integrated based on distributed events in this paper. Unfortunately, an event-driven SCADA service does not know who consumes its events, and consumers do not know who produces the events either. In this environment, a SCADA service cannot directly control access because of anonymous and multicast interactions. In this paper, a distributed security framework is proposed to protect not only service operations but also data contents in smart grid environments. Finally, a security implementation scheme is given for SCADA services.

Analysis of Mega Event effect using System Dynamics : Application in Millennial Anniversary of the Tripitaka Koreana (시스템다이내믹스를 이용한 메가이벤트 개최 효과 분석: 대장경문화축전에의 적용)

  • Park, Gyung-Yeol;Choi, Seung-Dam;Kim, Dong-Hwan
    • Korean System Dynamics Review
    • /
    • v.14 no.1
    • /
    • pp.31-53
    • /
    • 2013
  • The purpose of this study is to explain the impact of hosting mega event using the system dynamics and to establish the model for analysis of the impact of hosting mega event. The results are as follows. First, the growth of inbound tourists have influenced long term effect. Second, the export has increased for a limited period only after the hosting mega event, but the increase in export returned to the previous state in terms of economic impact of mega event. Third, nation brand has been improved for a limited period only such as the economical impact in terms of socio-cultural impact of mega event. Last, citizenship consciousness has been improved after hosting mega event. Further researches have to be carried out to modify and reinforce the model.

  • PDF

Asynchronous State Feedback Control for SEU Mitigation of TMR Memory (비동기 상태 피드백 제어를 이용한 TMR 메모리 SEU 극복)

  • Yang, Jung-Min;Kwak, Seong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1440-1446
    • /
    • 2008
  • In this paper, a novel TMR (Triple Modular Redundancy) memory structure is proposed using state feedback control of asynchronous sequential machines. The main ability of the proposed structure is to correct the fault of SEU (Single Event Upset) asynchronously without resorting to the global synchronous clock. A state-feedback controller is combined with the TMR realized as a closed-loop asynchronous machine and corrective behavior is operated whenever an unauthorized state transition is observed so as to recover the failed state of the asynchronous machine to the original one. As a case study, an asynchronous machine modelling of TMR and the detailed procedure of controller construction are presented. A simulation results using VHDL shows the validity of the proposed scheme.

Electromagnetic-thermal two-way coupling analysis and application on helium-cooled solid blanket

  • Kefan Zhang;Shuai Wang;Hongli Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.927-938
    • /
    • 2023
  • The blanket plays an important role in fusion reactor and stands extremely high thermal and electromagnetic loads during operation situation and plasma disruption event, brings the need for precise thermal and electromagnetic analysis. Since the thermal field and EM field interact with each other nonlinearly, we develop a method of electromagnetic-thermal two-way coupling by using finite element software COMSOL. The coupling analyses of blanket under steady state and MD event are implemented and the results are analyzed. For steady state, the influences of coupling effects are relatively small but still recommended to be considered for a high precision analysis. The influence of thermal field on EM field can't be ignored under MD events. The variation of force density could cause a significant change in stress in certain parts of blanket. The influence of Joule heat during MD event is negligible, yet the potential temperature rise caused by induced current after MD event still needs to be researched.

Two-port machine model for discrete event dynamic systems (이산현상 시스템을 위한 두개의 입력을 가진 모델)

  • 이준화;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.212-217
    • /
    • 1992
  • In this paper, a two ports machine(TPM) model for discrete event dynamic systems(DEDS) is proposed. The proposed model is a finite state machine which has two inputs and two outputs. Inputs and outputs have two components, events and informations. TPM is different from other state machine models, since TPM has symmetric input and output. This symmetry enables the block diagram representation of the DEDS with TPM blocks, summing points, multiplying points, branch points, and connections. The graphical representation of DEDS is analogous to that of control system theory. TPM has a matrix representation of its transition and information map. This matrix representation simplifies the analysis of the DEDS.

  • PDF

New Modularization Method to Design Supervisory Control of Automated Laboratory Systems (자동화 시스템의 관리제어 설계를 위한 새로운 모듈화 기법)

  • Jung, Taeyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.38-47
    • /
    • 2014
  • This paper describes the application of discrete event systems theory to the design of an automated laboratory system. Current automated laboratory systems typically consist of several interacting processes that must be carefully sequenced to avoid any possible process conflicts. Discrete Event Systems (DES) theory and Supervisory Control Theory (SCT) can be applied together as effective methods of modeling the system dynamics and designing supervisory controllers to precisely sequence the many processes that such systems might involve. Classical approaches to supervisory controller design tend to result in complex controller structures that are difficult to implement, maintain, and upgrade. In this paper, a new approach to designing supervisory controllers for automated laboratory systems is introduced. This new approach uses a modular controller structure that is easier to implement, maintain, and upgrade, and deals with "state explosion" issues in a novel and efficient way.

GK-DEVS : Geometric and Kinematic DEVS for Simulation of 3 Dimensional Man-Made Systems (GK-DEVS : 3차원 인간제작 시스템의 시뮬레이션을 위한 형상 기구학 DEVS)

  • 황문호;천상욱;최병규
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.39-54
    • /
    • 2000
  • Presented in this paper is a modeling and simulation methodology for 3 dimensional man-made systems. Based on DEVS(discrete event system specification) formalism[13], we propose GK-DEVS (geometrical and kinematic DEVS) formalism to describe the geometrical and kinematic structure and continuous state dynamics. To represent geometry and kinematics, we add a hierarchical structure to the conventional atomic model. In addition, we employ the "empty event" and its external event function for continuous state changing. In terms of abstract simulation algorithm[13], the simulation method of GK-DEVS, named GK-Simulator, is proposed for combined discrete-continuous simulation. Using GK-DEVS, the simulation of an FMS(flexible manufacturing system) consisting of a luring machine, a 3-axis machine and a RGV-mounted robot has been peformed.en peformed.

  • PDF

The Unary Feedback Over-Reporting Avoidance Scheme for the Event Report Management on the OSI Network Management System (OSI 망관리 시스템에서 사건복 관리를 위한 1진 피드백 과보고 회피기법)

  • 변옥환;진용옥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.1-15
    • /
    • 1993
  • In this paper, we propose over-reporting avoidance scheme which avoids congestion of network traffics by adjusting managed system's over-reporting, on the OSI network management model which reports events from managed system to managing system. In case of reporting events from managed system to managing system, management traffic concentration occurs, and it causes over-loading on the managing system and congestion on the network. This scheme takes advantage of feedback from managing system to managed system. Managed system transmits event reports as much as maximum event pertime allocated to itself to managing system, and it sets it's management variables to LOCK state and stops event reports as Threshold time is reached. At the time, managing system directs event reports again by using M-set primitive with referring it's status. With this scheme, distributed processing, dynamic network adaptation, convergence of optimal operation point is possible. In addition to it, a fairness is assured. In order to detect characteristics of the Unary feedback over-reporting avoidance scheme. It is observed a control capability of the event reporting and fairness of each nodes through measuring. ThresholdTime value. It is measured a number of mean activating nodes and maintained time of LOCK state according to event reporting load, and also measured lost ratio of management packet, queuing delay in managing system, and goodput to observe effects of general packet load. Binary feedback scheme. Unary feedback overreporting avoidance scheme and raw scheme on the OSI network management system each are compared and analyzed, and finally proved that the scheme proposed in this study performs better.

  • PDF

Design and Implementation of Supervisors to Control of a CIM Testbed (CIM Testbed의 제어를 위한 Supervisor의 설계와 구현)

  • Song, Tae-Seung;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.478-485
    • /
    • 2000
  • A discrete event systems (DES) is a physical system that is discrete in time and state space, asynchronous (event rather than clock-driven), and in some sense generative(or nondeterministic). This paper presents the design of fifteen modular supervisors to control an experimental CIM testbed. These supervisors are nonblocking, controllable and nonconflicting. After verification of the supervisors by simulation, the supervisors for AGV system have been implemented to demonstrate their efficacy.

  • PDF