DOI QR코드

DOI QR Code

Electromagnetic-thermal two-way coupling analysis and application on helium-cooled solid blanket

  • Kefan Zhang (School of Nuclear Science and Technology, University of Science and Technology of China) ;
  • Shuai Wang (Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China) ;
  • Hongli Chen (School of Nuclear Science and Technology, University of Science and Technology of China)
  • Received : 2022.07.25
  • Accepted : 2022.11.09
  • Published : 2023.03.25

Abstract

The blanket plays an important role in fusion reactor and stands extremely high thermal and electromagnetic loads during operation situation and plasma disruption event, brings the need for precise thermal and electromagnetic analysis. Since the thermal field and EM field interact with each other nonlinearly, we develop a method of electromagnetic-thermal two-way coupling by using finite element software COMSOL. The coupling analyses of blanket under steady state and MD event are implemented and the results are analyzed. For steady state, the influences of coupling effects are relatively small but still recommended to be considered for a high precision analysis. The influence of thermal field on EM field can't be ignored under MD events. The variation of force density could cause a significant change in stress in certain parts of blanket. The influence of Joule heat during MD event is negligible, yet the potential temperature rise caused by induced current after MD event still needs to be researched.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 12105279).

References

  1. H. Chen, et al., Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR, Fusion Eng. Des. 96-97 (2015) 89-94. https://doi.org/10.1016/j.fusengdes.2015.02.045
  2. C. Jin, H. Chen, Preliminary electromagnetic analysis of helium cooled solid blanket for CFETR by MAXWELL, Fusion Eng. Des. 112 (2016) 468-474. https://doi.org/10.1016/j.fusengdes.2016.06.017
  3. H. Chen, et al., Model development and electromagnetic analysis of a vertical displacement event for the Chinese Fusion Engineering Test Reactor helium cooled solid blanket, Nucl. Fusion 59 (5) (2019), 56022.
  4. Q. Xu, et al., Comprehensive analysis of electromagnetic and thermal-mechanical effects on HCSB under MD event for CFETR, Fusion Eng. Des. 138 (2019) 294-302. https://doi.org/10.1016/j.fusengdes.2018.11.043
  5. S. Wang, et al., Electromagnetic-mechanical coupling method and stress evaluation of the Chinese Fusion Engineering Test Reactor helium cooled solid breeder under a vertical displacement event scenario, Nucl. Fusion 59 (10) (2019), 106048.
  6. S. Liu, et al., Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology, Fusion Eng. Des. 124 (2017) 865-870. https://doi.org/10.1016/j.fusengdes.2017.02.065
  7. M. Wang, et al., An electromagnetic-structural coupling analysis of the HCCB blanket for the CFETR, Prog. Nucl. Energy 111 (2019) 150-155. https://doi.org/10.1016/j.pnucene.2018.11.002
  8. X. Ma, et al., Electromagnetic force evaluation on the water cooled ceramic breeder blanket for CFETR, Fusion Eng. Des. 131 (2018) 21-28. https://doi.org/10.1016/j.fusengdes.2018.04.037
  9. S. Liu, et al., Evaluation of electromagnetic forces on Chinese dual functional lithium lead test blanket module in ITER, Fusion Eng. Des. 85 (10-12) (2010) 2176-2180. https://doi.org/10.1016/j.fusengdes.2010.08.021
  10. I.A. Maione, A. Vaccaro, Analysis of electromagnetic loads on EU-DEMO inboard and outboard blanket vertical segments, Fusion Eng. Des. 89 (7-8) (2014) 1314-1318. https://doi.org/10.1016/j.fusengdes.2014.03.006
  11. I.A. Maione, et al., Analysis of EM loads on DEMO WCLL breeding blanket during VDE-up, Fusion Eng. Des. 136 (2018) 1523-1528. https://doi.org/10.1016/j.fusengdes.2018.05.048
  12. I.A. Maione, et al., Update of electromagnetic loads on HCPB breeding blanked for DEMO 2017 configuration, Fusion Eng. Des. 156 (2020), 111604.
  13. I.A. Maione, et al., A complete EM analysis of DEMO WCLL Breeding Blanket segments during VDE-up, Fusion Eng. Des. 146 (2019) 198-202. https://doi.org/10.1016/j.fusengdes.2018.12.017
  14. I.A. Maione, et al., Evaluation of EM loads distribution on DEMO blanket segments and their effect on mechanical integrity, Fusion Eng. Des. 109-111 (2016) 618-623. https://doi.org/10.1016/j.fusengdes.2016.02.035
  15. C. Zeile, et al., Structural assessment of the HCPB breeding blanket segments in the EU DEMO reactor under normal operation and a central plasma disruption, Fusion Eng. Des. 136 (2018) 335-339. https://doi.org/10.1016/j.fusengdes.2018.02.024
  16. W. Guan, et al., Electromagnetic analysis of cylindrical WCCB TBM, Fusion Eng. Des. 155 (2020), 111719.
  17. Y. Lee, et al., Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set, Fusion Eng. Des. 109e111 (2016) 389-397. https://doi.org/10.1016/j.fusengdes.2016.02.093
  18. D. Kim, et al., Eddy current induced electromagnetic loads on shield blankets during plasma disruptions in ITER: a benchmark exercise, Fusion Eng. Des. 85 (10-12) (2010) 1747-1758. https://doi.org/10.1016/j.fusengdes.2010.05.032
  19. S. Pak, et al., Electromagnetic load calculation of the ITER machine using a single finite element model including narrow slits of the in-vessel components, Fusion Eng. Des. 88 (12) (2013) 3224-3237. https://doi.org/10.1016/j.fusengdes.2013.09.012
  20. Chun-ming Gao, et al., Electromagnetic coupling evaluations on ITER Chinese TBM under plasma major disruptions, J. Univ. Electron. Sci. Technol. China 42 (2013) 678-683, 05.
  21. S. Shao-yun, MODELING OF MULTIPHYSICS PROBLEM AND RESEARCH OF COUPLING RELATION, Journal of Wuhan Polytechnic University, 2005.
  22. G. Zhou, et al., Steady state and transient thermal analysis of the updated helium-cooled solid breeder blanket for CFETR, Ieee T. Plasma Sci. 46 (5) (2018) 1422-1428. https://doi.org/10.1109/TPS.2018.2794383
  23. K. Zhang, et al., Magnetostatic analysis of HCSB blanket under three different plasma equilibrium configurations of CFETR, Fusion Eng. Des. 156 (2020), 111741.
  24. J. Zheng, et al., Concept design of CFETR superconducting magnet system based on different maintenance ports, Fusion Eng. Des. 88 (11) (2013) 2960-2966. https://doi.org/10.1016/j.fusengdes.2013.06.008
  25. K. Mergia, N. Boukos, Structural, thermal, electrical and magnetic properties of Eurofer 97 steel, J. Nucl. Mater. 373 (1-3) (2008) 1-8. https://doi.org/10.1016/j.jnucmat.2007.03.267
  26. M.A. Mitchell, Electrical resistivity of beryllium, J. Appl. Phys. 46 (11) (1975) 4742-4746. https://doi.org/10.1063/1.321550
  27. P.D. DESAI, et al., Electrical-resistivity of selected elements, J. Phys. Chem. Ref. Data 13 (4) (1984) 1069-1096. https://doi.org/10.1063/1.555723
  28. Z. Lv, et al., Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR, Fusion Eng. Des. 95 (2015) 79-83. https://doi.org/10.1016/j.fusengdes.2015.04.038