• 제목/요약/키워드: Evaporation spray

검색결과 199건 처리시간 0.027초

적접분사 엔진의 유동장 및 분무특성에 미치는 선회비의 영향에 대한 수치해석적 연구 (Numerical Simulation of Swirl Effect on the Flow Fields and Spray Characteristics in Direct Injection Engine)

  • 홍기배;김형섭;양희천;유홍선
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.120-129
    • /
    • 1995
  • 직접분사엔진에서 기상과 분무액적간의 유동특성 및 분무특성에 미치는 선회비의 영향에 대하여 수치해석 하였다. 정적인 환경에서는 분무초기를 제외하고는 계산과 실험결과가 잘 일치하였다. 운전상태에서는 연료분사 기간동안 속도장의 영향이 증가하여 스쿼시유동의 중요성이 상대적으로 감소하였다. 선회비가 증가할수록 높은 난류에너지가 연소실내에 분포되며 분무액적이 확산되고 기상과의 상호작용이 강해져서 증발률이 증가하였다.

  • PDF

물 분무를 이용한 연소가스 냉각 1차원 해석 (1-D Analysis for Water Spray Cooling of Exhaust Gas in Combustor Test Facility)

  • 임주현;김명호;김용련
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.61-67
    • /
    • 2015
  • 연소기 시험 장치의 구축 시 고온의 연소 가스의 냉각은 중요한 설계요구조건이다. 물 분무(Water spray) 냉각 방식은 증발 과정에서 물의 잠열을 이용하므로, 효과적인 연소 가스 냉각이 가능하다. 본 연구에서는 연소기 시험 설비 구축 과정의 일환으로, 물 분무를 이용한 연소 가스의 냉각을 이해하기 위하여 연속방정식, 에너지 보존식과 포화 증기의 압력-온도 관계식을 이용한 1차원 해석을 수행하였다. 연소기 시험 장치에서 배출되는 고온, 고압의 연소 가스는 냉각수와의 혼합과정에서 배출가스의 온도가 낮아지며, 분무된 물의 일부는 기화하여 연소가스와 함께 배출되고, 일부는 다시 응축 되어 집수조로 모인다. 냉각수는 연소 가스의 온도를 낮춰주는 동시에, 증발된 증기는 연소기 내부의 압력을 증가시키므로 1차원 해석에서 증기의 압력-온도 관계식을 고려하여 해석을 수행하였다. 1차원 해석으로부터 연소가스의 적절한 냉각과 배기 덕트 내부의 압력의 지나친 상승을 피하기 위한 최적의 물 분무량을 확인하였으며, 물 분무 냉각 방식에 대한 물리적 이해를 얻을 수 있었다.

Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구 (A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector)

  • 오정모;차원심;김기범;이진하;이기형
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

The Effects of Water Addition on the Color and Crystalline Phase of Y2O3 Coatings Fabricated by Plasma Suspension Spray

  • Park, Sang-Jun;Lee, Jung-Ki;Oh, Yoon-Suk;Kim, Seongwon;Kim, Hyungsun;Lee, Sung-Min
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.641-646
    • /
    • 2016
  • The effects of water addition on $Y_2O_3$ coatings or thick films prepared by plasma suspension spray (SPS) have been investigated. Water addition in suspension media was found to be effective to control the color of a $Y_2O_3$ coating prepared by SPS. The color changed with water addition at the shortest stand-off distance of 50 mm even if samples had the same crystalline phase. Change was not correlated with fragmentation behavior of liquid suspension inside the plasma jet. Water content over 50 vol% was found to produce unmelted particles, indicating that water suppressed heat transfer to the particles. However, plasma jet temperature was not affected. Instead, the coating fabricated with water addition has higher oxygen and lower carbon content compared to these characteristics of the coating without water addition. This was attributed to the retarded complete evaporation of liquid media from the suspension droplet, resulting in inhibition of excessive heating and evaporation of the molten $Y_2O_3$ droplet. In this regard, crystalline phase development with respect to stand-off distance and water addition was discussed.

농축 및 건조방법에 따른 생강 추출액 분말의 품질변화 (Quality of Ginger Powder as Affected by Concentration and Dehydration Methods of Ginger Extracts)

  • 정문철;정승원;이영춘
    • 한국식품과학회지
    • /
    • 제31권6호
    • /
    • pp.1589-1595
    • /
    • 1999
  • 생강 추출액의 저장안정성을 제공하기 위하여 적정농축 및 건조방법을 선정코자 감압증류 및 RO(역삼투압)에 의한 농축과 냉동 및 분무건조방법별로 분말화한 다음 관능특성을 비롯한 이화학적인 품질특성을 비교하여 보았다. 농축 및 건조방법별 분말제품을 제조한 결과 갈변도는 감압증류법이 RO보다. 분무건조가 냉동건조보다 갈변이 덜 진행된 상태인 반면에 당 함량이나 유리아미노산은 농축방법의 영향을 인식할 수 없었으나 건조방법에 있어서는 냉동건조시 대체로 이들 성분의 손실율을 적게할 수 있었다. 효소적 액화추출액 분말은 생강 추출액 분말보다 단백질과 조회분함량이 낮은 반면 조지방 함량은 약간 높게 나타났으며, 농축 및 건조 중 갈변도와 유리 아미노산의 변화율을 생강 추출액 분말보다 억제하면서 용해도를 증가시킬 수 있는 효과가 있었다. 또한 생강분말에 대한 기호도 검사결과, 농축방법에서는 생강 추출액 및 효소적 액화추출액에서 RO농축한 제품이 우수한 결과를 보였으며 건조방법에서는 냉동건조가 우수한 결과를 나타내었다. 특히 효소적 액화 추출액의 경우에는 RO농축한 후 냉동건조하면 종합 기호도에 있어서 생강추출액 분말에 대한 기호도 특성과 거의 차이가 없는 것으로 나타났다.

  • PDF

DME를 사용한 단기통 엔진의 연소특성에 관한 수치해석적 연구 (A Numerical Study on Combustion Characteristics of Single Cylinder Engine Fueled with DME)

  • 김현철;강우;나병철;김명환
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.39-48
    • /
    • 2006
  • In this research, in order to study the spray, combustion, and emission characteristics of the common rail DME engine, the target engine was disassembled, and 3D CAD file was constructed using a 3D measurement machine and a rapid prototyping machine. Using the obtained 3D geometry, fine moving meshes are generated, and three dimensional non-steady turbulence flow field and combustion phenomenon including spray were numerically analyzed. As a result, IMEP of DME and diesel in medium and high speed revolution showed similar performance. As the DME fuel start to burn in spray area, the vaporized fuel rapidly spreads squish area in low speed revolution. In the case of DME engine, CO and NOx are relatively consistent with experiment results. It was found that the break-up, evaporation, collision model of DME fuel need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.

Mie 산란 방법과 엔트로피 해석 방법을 이용한 혼합연료비에 따른 분무 균질도 특성에 관한 연구 (A Study on the Macro-Scopic Spray Characteristic of Homogeneous Degree for the GDI Injector According to Mixture(Gasoline-Diesel) Ratio Using Mie-Scattering Method and the Entropy Analysis)

  • 이창희;이기형;이창식;배재일
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2003
  • In this study, his technique was applied to a GDI spray in order to investigate the mixture distribution. In addition, the homogeneity degree and diffusion effect according to ambient temperature in the high pressure chamber were analyzed by using an entropy analysis method. From this experiment, we could find that entropy analysis is very effective method for the analysis of mixture formation, and the entropy values increase with the progress of uniformity in diffusion Process. we tried to provide the fundamental data for parameter which effects on the spray macroscopic characteristics with mixture ratio of diesel and gasoline. In addition, the mixture formation was analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. From the entropy analysis results we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions. As to increasing ambient temperature and increasing gasoline rate, the entropy intensity using the statistic thermodynamics method is increased because evaporation rate is higher gasoline than diesel.

Dimethyl Ether(DME) 연료의 분무 거동 및 미립화 특성 (Macroscopic Behavior and Atomization Characteristics of Dimethyl Ether)

  • 서현규;박지홍;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl Ether(DME) is an alternative fuel for diesel engine, it is renewable and offers potential reductions in emissions. This work was conducted to figure out the macroscopic behavior and the atomization characteristics of DME using a common-rail injection system. The macroscopic behavior was visualized with the spray visualization system composed of a Nd;YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer(PDPA) system. In this study, it was revealed that the macroscopic behavior and the atomization characteristics of DME are similar compared with commercial diesel fuel. However, DME fuel has a shorter spray tip penetration and a small SMD due to the effect of evaporation characteristics.

34kW급 LNG Spray펌프용 극저온 유도전동기 설계에 관한 연구 (A Study on the Design of 34kW Cryogenic Induction Motor for LNG Spray Pump)

  • 정동욱;이기욱;류재호;박관수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.918-919
    • /
    • 2015
  • Because of environmental regulations in emissions control area, the demand for ships to use LNG as fuel is increasing. Orders for domestic shipbuilders to produce LNG carriers are steadily increasing. However, major appliances such as spray pump, main cargo pump and others have been relied on imports. Therefore, development of pump motor using at cryogenic temperature is necessary. Operating temperature of an induction motor is at $-163^{\circ}C$. At this low temperature, the resistivity of a motor coil is quite different from normal ones, and so does the torque characteristics of motor. This paper presents a designing method of a cryogenic induction motor for LNG pump. The variation of resistivity of motor coil is considered in the design process. The heat source such as core-loss, hysteresis-loss and copper-loss are analyzed to prevent the LNG evaporation which may cause the motor failure.

  • PDF

고압 유동조건에서의 액체 램제트 엔진의 분무특성 (Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition)

  • 윤현진;이충원
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF