References
- M. Schaepkens, R. C. M. Bosch, T. E. F. M. Standaert, G. S. Oehrlein, and J. M. Cook, "Influence of Reactor Wall Conditions on Etch Processes in Inductively Coupled Fluorocarbon Plasmas," J. Vac. Sci. Technol. A, 16 2099-107 (1998).
- Y. Kobayashi, "Current Status and Needs in the Future of Ceramics Used for Semiconductor Production Equipment (in Japanese)"; pp. 1-7 in Proceeding of the 37th Seminar on High-Temperature, Ceramics Society of Japan, Osaka, 2005.
- N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu, and Y. Kitayama, "Reduction of Particle Contamination in Plasma-Etching Equipment by Dehydration of Chamber Wall," Jpn. J. Appl. Phys., 47 [5R] 3630-34 (2008). https://doi.org/10.1143/JJAP.47.3630
- G. S. May and C. J. Spanos, Fundamentals of Semiconductor Manufacturing and Process Control; pp. 98-102, IEEE, New Jersey 2006.
- C. Cardinaud, M. C. Peignon, and P. Y. Tessier, "Plasma Etching: Principles Mechanisms, Application to Micro- and Nano-Technologies," Appl. Surf. Sci., 164 72-83 (2000). https://doi.org/10.1016/S0169-4332(00)00328-7
-
D. M. Kim, Y. S. Oh, S. W. Kim, H. T. Kim, D. S. Lim, and S.-M. Lee, "The Erosion Behaviors of
$Y_2O_3$ and$YF_3$ Coatings under Fluorocarbon Plasma," Thin Solid Films, 519 [20] 6698-702 (2011). https://doi.org/10.1016/j.tsf.2011.04.049 - J. Iwasawa, R. Nishimizu, M. Tokita, and M. Kiyohara, "Plasma-Resistant Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process," J. Am. Ceram. Soc., 90 [8] 2327-32 (2007). https://doi.org/10.1111/j.1551-2916.2007.01738.x
- J. Kitamura, Z. Tang, H. Mizuno, K. Sato, and A. Burgess, "Structural, Mechanical and Erosion Properties of Yttrium Oxide Coatings by Axial Suspension Plasma Spraying for Electronics Applications," J. Therm. Spray Technol., 20 [1] 170-85 (2011). https://doi.org/10.1007/s11666-010-9585-x
-
S. J. Kim, J. K. Lee, Y. S. Oh, S. W. Kim, and S. M. Lee, "Effect of Processing Parameters and Powder Size on Microstructures and Mechanical Properties of
$Y_2O_3$ Coatings Fabricated by Suspension Plasma Spray," J. Korean Ceram. Soc., 52 [6] 395-402 (2015). https://doi.org/10.4191/kcers.2015.52.6.395 - P. Fauchais and G.Montavon, "Latest Developments in Suspension and Liquid Precursor Thermal Spraying," J. Therm. Spray Technol., 19 [1-2] 226239 (2010).
- C. Delbos, J. Fazilleau, V. Rat, J. F. Coudert, P. Fauchais, and B. Pateyron, "Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation," Plasma Chem. Plasma Process, 26 393-414 (2006). https://doi.org/10.1007/s11090-006-9020-8
- J. Kitamura, H. Mizuno, N. Kato, and I. Aoki, "Plasma-Erosion Properties of Ceramic Coating Prepared by Plasma Spraying," J. Jpn Thermal Spray Soc., 47 [7] 1677-83 (2006).
- J. R. Nicholls. K. J. Lawson, A. Johnstone, and D. S. Rickerby, "Methods to Reduce the Thermal Conductivity of EBPVD TBCs," Surf. Coat. Technol., 151-152 383-91 (2002). https://doi.org/10.1016/S0257-8972(01)01651-6
- S. Dosta, M. Torrell, I. G. Cano, and J. M. Guilemany, "Functional Colored Ceramic Coatings Obtained by Thermal Spray for Decorative Application," J. Eur. Ceram. Soc., 32 [14] 3685-92 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.04.026
- P. Ctibor, Z. Pala, J. Sedlac, V. Stengl, I. Pis, T. Zahoranova, and V. Nehasil, "Titanium Dioxide Coating Sprayed by a Water Stabilized Plasma Gun (WSP) with Argon and Nitrogen as the Powder Feeding Gas : Differences in Structural Mechanical and Photocatalytic Behavior," J. Therm. Spray Tech., 21 [3] 425-34 (2012). https://doi.org/10.1007/s11666-012-9747-0
- G. M. Ingo, "Origin of Darkening in 8 wt% Yttria-Zirconia Plasma-Sprayed Thermal Barrier Coatings," J. Am. Ceram. Soc., 74 [2] 381-86 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06891.x
- M. J. Kelly, D. E. Wolfe, J. Singh, and J. Eldridge, "Thermal Barrier Coating Design with Increased Reflectivity and Lower Thermal Conductivity for High-Temperature Turbine Applications," Int. J. Appl. Ceram. Technol., 3 [2] 81-93 (2006). https://doi.org/10.1111/j.1744-7402.2006.02073.x
- M. Hartmanova, M. Jergel, J. P. Holgado, and J. P. Espinos, "Structure and Mircostructure of EB-PVD Yttria Thin Films Grown on Si (111) Substrate," Vacuum, 85 535-40 (2010). https://doi.org/10.1016/j.vacuum.2010.09.003
-
X. L. Sun, A. I. Y. Tok, S. L. Lim, F. Y. C. Boey, C. W. Kang, and H. W. Ng, "Combustion-aided Suspension Plasma Spraying of
$Y_2O_3$ Nanoparticles: Synthesis and Modeling," J. App. Phys., 103 [3] 04308 (2008). - W. M. Haynes, CRC Handbook of Chemistry and Physics; CRC Press, USA, 2016.
- M. Ohring, Materials Science of Thin Films; Academic Press, USA, 2002.
- J. Maier, Physical Chemistry of Ionic Materials; John Wiley & Sons, UK, 2004.
- D. Djurovic, M. Zinkevich, and F. Aldinger, "Thermodynamic Modeling of the Yttrium-Oxygen System," Calphad, 31 560-66 (2007). https://doi.org/10.1016/j.calphad.2007.01.010
Cited by
- 플라즈마 용사된 Al2O3-TiO2 코팅의 전기적 특성 vol.30, pp.12, 2016, https://doi.org/10.4313/jkem.2017.30.12.788
- CaO-Al2O3-SiO2 계 유리 스프레이 코팅막의 소성 거동에 대한 연구 vol.29, pp.6, 2019, https://doi.org/10.6111/jkcgct.2019.29.6.298
- CaO-Al2O3-SiO2 계 벌크 유리와 스프레이 코팅막의 CF4/O2/Ar 플라즈마 식각 시 내식성 비교 vol.30, pp.2, 2016, https://doi.org/10.6111/jkcgct.2020.30.2.066