• Title/Summary/Keyword: Eurocode 2

Search Result 149, Processing Time 0.03 seconds

A Proposal for an Evaluation of Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web (수평보강재로 보강된 세장 복부판을 갖는 플레이트 거더의 휨강도 평가 방법의 제안)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.119-132
    • /
    • 2014
  • In this paper, a series of numerical analyses were performed to evaluate the flexural resistance of steel plate girder with longitudinally stiffened and slender web. The SM490 steel was adopted for the study and the flexural resistances evaluated from the numerical analysis were compared with those suggested by the AASHTO LRFD and the Eurocode 3 codes, respectively. It was found that the AASHTO LRFD code could considerably underestimate the flexural resistance as the web slenderness becomes smaller. This comes from the fact that current AASHTO LRFD code does not consider a possible increase of slenderness limits for compact and noncompct web, and also an additional effect of web restraint on the rotation of compression flange in longitudinally stiffened web. Therefore, the slenderness limits of web and flange have been newly proposed for the plate girders with longitudinally stiffened web and it is analytically verified that the flexural resistance can be appropriately estimated by applying the proposed slenderness limits to the AASHTO LRFD code.

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

Performance Evaluation of the Stair Joints Constructed with Partial Precast Concrete System (프리캐스트 콘크리트 계단 접합부의 접합방식에 따른 성능평가)

  • Chang, Kug-Kwan;Lee, Eun-Jin;Jin, Byung-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.833-840
    • /
    • 2008
  • The time and cost can be reduced when applying partial precast concrete to the stair system in comparison to the cast-in-place or precast method. Because the performance of staircase which is used for evacuation can be largely different from connection types of precast concrete member, we tried to know structural behavior and performance evaluation according to each type of stair joints by experimental study. In the cast-in-place rigid joint, much reinforcement is needed in the end portion because much stress is concentrated in the middle portion. Also, in the pin joint which is used in the connection point, the maximum stress occurs in the middle point, so not only the amount of re-bar is increased but also the serviceability is largely decreased. The bolt type of semi-rigid joints proposed in this study had been increased strength and serviceability which is similar to the rigid joints. Also, its ductility was shown about 0.7 times in comparison to the rigid type and was about 2.8 times for the pin joint type. According to the classification of joint in Eurocode, it can be considered that it is one of the semi-rigid joints which are in the semi-rigid-full strength, and the structural behavior can be expected by using a model which applied to stiffness value decreased by 40 percent.

Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete (콘크리트 장기변형의 구속계수와 선압축력의 손실률)

  • 연정흠;주낙친
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.521-529
    • /
    • 2002
  • A restraint coefficient for creep and dry shrinkage deformation of concrete in a composite section was derived to calculate the residual stress, and an equation for the loss rate of the pre-compression force was proposed. The derived restraint coefficient was computed by using the transformed section properties for the age-adjusted effective modulus of elasticity. The long-term behavior of complicate composite sections could be analyzed easily with the restraint coefficient. The articles of the current design code was examined for PSC and steel composite sections. The dry shrinkage strains of $150 ~ 200$\times$10^{-6}$ for the computations of the statically indeterminate force and the expansion joint could be under-estimated for less restrained sections such as the reinforced concrete. The dry shrinkage strain of $180$\times$10^{-6}$ for the computation of residual stress in the steel composite section was unreasonably less value. The loss rate of 16.3% of the design code for the PSC composite section in this study was conservative for the long-term deformation of the ACI 205 but could not be used safely for that of the Eurocode 2. For pre-compressed concrete slab in the steel composite section, the loss rate of prestressed force with low strength reinforcement was much larger than that with high strength tendon. The loss rate of concrete pre-compression increased, while that of pre-tension decreased due to the restraint of the steel girder.

Development of Foundation Structure for 8MW Offshore Wind Turbine on Soft Clay Layer (점토층 지반에 설치 가능한 8MW급 해상풍력발전기 하부구조물 개발)

  • Seo, Kwang-Cheol;Choi, Ju-Seok;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.394-401
    • /
    • 2021
  • The construction of new renewable energy facilities is steadily increasing every year. In particular, the offshore wind farm market, which has abundant development scalability and a high production coefficient, is growing rapidly. The southwest sea has the highest possible offshore wind power potential, and related projects are to be promoted. This study presents a basic design procedure by the EUROCODE and considers structural safety in the development of an effective of shore wind foundation in the clay layer. In a previous study, the wind power generator of 5MW class was the main target, but the 8MW of wind turbine generator, which meets the technical trend of the wind turbine market in the Southwest sea, was selected as the standard model. Furthermore, a foundation that fulfills the geological conditions of the Southwest sea was developed. The structural safety of this foundation was verified using finite element method. Moreover, structural safety was secured by proper reinforcement from the initial design. Based on the results of this study, structural safety check for various types of foundations is possible in the future. Additionally, specialized structural design and evaluation guidance were also established.

Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings

  • B-Jahromi, Ali;Rotimi, Abdulazeez;Tovi, Shivan;Goodchild, Charles;Rizzuto, Joseph
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • The phenomenon of concrete column shortening has been widely acknowledged since it first became apparent in the 1960s. Axial column shortening is due to the combined effect of elastic and inelastic deformations, shrinkage and creep. This study aims to investigate the effects of ambient temperature, relative humidity, cement hardening speed and aggregate type on concrete column shortening. The investigation was conducted using a column shortening prediction model which is underpinned by the Eurocode 2. Critical analysis and evaluation of the results showed that the concrete aggregate types used in the concrete have significant impact on column shortening. Generally, aggregates with higher moduli of elasticity hold the best results in terms of shortening. Cement type used is another significant factor, as using slow hardening cement gives better results compared to rapid hardening cement. This study also showed that environmental factors, namely, ambient temperature and relative humidity have less impact on column shortening.

The role of slenderness on the seismic behavior of ground-supported cylindrical silos

  • Demir, Aysegul Durmus;Livaoglu, Ramazan
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 2019
  • This paper reports on the results of a parametric study, which examines the effects of varying aspect ratios on the dynamic response of cylindrical silos directly supported on the ground under earthquake loading. Previous research has shown that numerical models can provide considerably realistic simulations when it comes to the behavior of silos by using correct boundary conditions, appropriate element types and material models. To this end, a three dimensional numerical model, taking into account the bulk material-silo wall interaction, was produced by the ANSYS commercial program, which is in turn based on the finite element method. The results obtained from the numerical analysis are discussed comparatively in terms of dynamic material pressure, horizontal displacement, equivalent base shear force and equivalent bending moment responses for considered aspect ratios. The effects experienced because of the slenderness of the silo in regards to the seismic response were evaluated along with the effectiveness of the classification system proposed by Eurocode in evaluating the loads on the vertical walls. Results clearly show that slenderness directly affects the seismic response of such structures especially in terms of behavior and the magnitude of the responses. Furthermore the aspect ratio value of 2.0, given as a behavioral changing limit in the technical literature, can be used as a valid limit for seismic behavior.

Should accidental eccentricity be eliminated from Eurocode 8?

  • Anagnostopoulos, S.A.;Kyrkos, M.T.;Papalymperi, A.;Plevri, E.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.463-484
    • /
    • 2015
  • Modern codes for earthquake resistant building design require consideration of the so-called accidental design eccentricity, to account for torsional response caused by several factors not explicitly considered in design. This provision requires that the mass centres in the building floor be moved a certain percentage of the building's dimension (usually 5%) along both the x and y axes and in both positive and negative directions. If one considers also the spatial combinations of the two component motion in a dynamic analysis of the building, the number of required analyses and combinations increases substantially, causing a corresponding work load increase for practicing structural engineers. Another shortcoming of this code provision is that its introduction has been based primarily on elastic results from investigations of oversimplified, hence questionable, one story building models. This problem is addressed in the present paper using four groups of eccentric braced steel buildings, designed in accordance with Eurocodes 3 (steel) and 8 (earthquake design), with and without accidental eccentricities considered. The results indicate that although accidental design eccentricities can lead to somewhat reduced inelastic response demands, the benefit is not significant from a practical point of view. This leads to suggestions that accidental design eccentricities should probably be abolished or perhaps replaced by a simpler and more effective design provision, at least for torsionally stiff buildings that constitute the vast majority of buildings encountered in practice.

Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam With Reinforced End by Steel Plates (단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

Crack Width Control and Flexural Behavior of Continuous Composite Beams (연속합성보의 균열폭 제어와 휨거동 평가)

  • Shim, Chang Su;Kim, Hyun Ho;Yun, Kwang Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.195-206
    • /
    • 2005
  • Experimental research was performed on the 6m-6m two-span, continuous composite beams. Background research for the crack width control of continuous composite bridges in the Eurocode-4 is reviewed and equationsfor the calculation of crack width considering tension stiffening are presented. The behavior of the continuous composite beams was investigated using the initial and stabilized cracking process of the concrete slab in tension. Test results showed that the current requirement of minimum reinforcement for ductility in Korea Highway Bridge Design Codes could be reduced. The flexural stiffness of cracked continuous composite beams can be evaluated by the uncracked section analysis until the stabilized cracking stage. An empirical equation for the relationship between the stress of tensile reinforcements and crack width was obtained from the test results.