DOI QR코드

DOI QR Code

Development of Foundation Structure for 8MW Offshore Wind Turbine on Soft Clay Layer

점토층 지반에 설치 가능한 8MW급 해상풍력발전기 하부구조물 개발

  • Seo, Kwang-Cheol (Dept. of Naval Architecture and Ocean Engineering, Mokpo National Maritime University) ;
  • Choi, Ju-Seok (Jeonnam Headquarters, Korea Marine Equipment Research Institute) ;
  • Park, Joo-Shin (Central Research Institutes, Samsung Heavy Industries)
  • 서광철 (목포해양대학교 조선해양공학과) ;
  • 최주석 (한국조선해양기자재연구원) ;
  • 박주신 (삼성중공업 중앙연구소)
  • Received : 2021.03.03
  • Accepted : 2021.04.27
  • Published : 2021.04.30

Abstract

The construction of new renewable energy facilities is steadily increasing every year. In particular, the offshore wind farm market, which has abundant development scalability and a high production coefficient, is growing rapidly. The southwest sea has the highest possible offshore wind power potential, and related projects are to be promoted. This study presents a basic design procedure by the EUROCODE and considers structural safety in the development of an effective of shore wind foundation in the clay layer. In a previous study, the wind power generator of 5MW class was the main target, but the 8MW of wind turbine generator, which meets the technical trend of the wind turbine market in the Southwest sea, was selected as the standard model. Furthermore, a foundation that fulfills the geological conditions of the Southwest sea was developed. The structural safety of this foundation was verified using finite element method. Moreover, structural safety was secured by proper reinforcement from the initial design. Based on the results of this study, structural safety check for various types of foundations is possible in the future. Additionally, specialized structural design and evaluation guidance were also established.

신재생에너지 신규설비 보급이 매년 꾸준히 증가하고 있으며, 그중 개발 확장성이 풍부하고 생산유발계수가 큰 해상풍력 시장이 급성장하고 있다. 특히 서남해 권역은 최고 수준의 해상풍력 잠재량을 보유하고 있으며, 관련 프로젝트들이 추진 중이다. 본 연구는 점토층 지반에 효과적인 해상풍력 하부구조물의 개발에 있어 EUROCODE에 의한 구조물의 설계 절차를 제시하고 구조 안전성을 고찰하여 관련 기술 분야에 이바지함을 목표로 한다. 선행연구에서는 풍력발전기 용량이 5MW급을 주요 대상으로 하였으나, 서남해 해상풍력발전기 시장의 기술 추세에 부합하는 발전 용량 8MW급을 연구 모델로 선정하였다. 이에 본 연구에서는 서남해 지질 조건에 부합하는 하부구조물을 개발하고, 구조 안전성을 유한요소법을 활용하여 검증하였다. 초기 설계안에서 일부 구간을 보강하여 구조 안전성을 확보하였다. 본 연구 결과를 기반으로 하여, 향후 다양한 형태의 하부구조물에 대한 구조 안전성 평가가 가능하며, 전문화된 구조 설계 및 평가 기준을 확립하였다.

Keywords

References

  1. BS EN 1993-1-1(2005), Eurocode 3: Design of steel structures, General rules and rules for buildings, 1993-1-1.
  2. Choi, C. H., S. D. Cho, J. H. Kim, and J. G. Chae(2010), Technical issues for offshore wind-energy farm and monopile foundation, KSC fall national conference, pp. 486-493.
  3. de Vries, W., N. K. Vemula, P. Passon, T. Fischer, D. Kaufer, D, Matha, and F. Vorphal(2011), Final report WP4: Support structure concepts for deep water sites, Technical report-Project wind.
  4. GL Garrad Hassan(2012), Final load calculations for the 8MW wind turbine to ice class IA, Document No; 104855-04, pp. 14-167.
  5. IEC 61400-3-1(2019), Wind energy generation systems, design requirements for fixed offshore wind turbines, Part. 3-7, pp. 23-69.
  6. Jang, H. S., J. S. Goo, D. M. Bae, and S. Y. Bae(2012), Analysis of offshore wind turbine considering environmental loads, KSCE 2012 convention, pp. 149-152.
  7. Lee, D. H., H. S. Choi, S. Y. Ha, H. S. Jang, and H. S. Kim(2017), The design of a jacket sub-structure for offshore wind turbine based on offshore wind turbine design criteria, Journal of new and renewable energy, pp. 85-89.
  8. Lee, J. H. and S. Y. Kim(2014), Design sensitivity and optimum design of monopile support structure in offshore wind turbine, Journal of the Society of Naval Architects of Korea, Vol. 51, No. 1, pp. 78-87. https://doi.org/10.3744/SNAK.2014.51.1.78
  9. Lee, K. H, S. K. Park, G. H. Kim, and T. G. Hwang(2020), Basic design of a flange connected transition piece between offshore wind turbine and monopile foundation, Transaction of the Korean Hydrogen and New Energy Society, Vol. 31, No. 1, pp. 160-168. https://doi.org/10.7316/KHNES.2020.31.1.160
  10. Ma, H. and J. Yang(2020), A novel hybrid monopile foundation for offshore wind turbines, Ocean engineering, Vol. 198, pp. 971-983.
  11. MOLIT(2018), Earthquake Design Standard-MOLIT (Ministry of Land, Infrastructure and Transportation), Korean design standard KDS 11 50 25, pp. 15-50.
  12. SACS User's manual(2018), Introduction of linear and nonlinear analysis and it's application of shell model ling, Vol. 2, pp. 50-65.
  13. Soil measurement report(2013), Optimized leg design and development of jack-up system for wind turbine installation vessel(WTIV), Project No.20123010020090 3-7, pp. 23-69.
  14. Sun, M. Y., S. B. Lee, K. Y. Lee, and B. Y. Moon(2014), The study on substructure design and analysis for 5MW offshore wind turbine, Journal of the Korean Society of Marine Engineering, Vol. 38, No. 9, pp. 1075-1080. https://doi.org/10.5916/jkosme.2014.38.9.1075
  15. Ueda, K., R. Uzuoka, S. Iai, and T. Okamura(2020), Centrifuge model tests and effective stress analyses of offshore wind turbine systems with a suction bucket foundation subjected to seismic load, Soils and foundation, Vol. 60, pp. 1546-1569. https://doi.org/10.1016/j.sandf.2020.08.007
  16. Velarde, J., C. Kramhoft, and J. D. Sorensen(2019), Global sensitivity analysis of offshore wind turbine foundation fatigue loads, Renewable energy, Vol. 140, pp. 177-189. https://doi.org/10.1016/j.renene.2019.03.055